| View source on GitHub | 
Converts a class vector (integers) to binary class matrix.
tf.keras.utils.to_categorical(
    y, num_classes=None, dtype='float32'
)
  E.g. for use with categorical_crossentropy.
| Args | |
|---|---|
| y | Array-like with class values to be converted into a matrix (integers from 0 to num_classes - 1). | 
| num_classes | Total number of classes. If None, this would be inferred asmax(y) + 1. | 
| dtype | The data type expected by the input. Default: 'float32'. | 
| Returns | |
|---|---|
| A binary matrix representation of the input. The class axis is placed last. | 
a = tf.keras.utils.to_categorical([0, 1, 2, 3], num_classes=4) a = tf.constant(a, shape=[4, 4]) print(a) tf.Tensor( [[1. 0. 0. 0.] [0. 1. 0. 0.] [0. 0. 1. 0.] [0. 0. 0. 1.]], shape=(4, 4), dtype=float32)
b = tf.constant([.9, .04, .03, .03,
                 .3, .45, .15, .13,
                 .04, .01, .94, .05,
                 .12, .21, .5, .17],
                shape=[4, 4])
loss = tf.keras.backend.categorical_crossentropy(a, b)
print(np.around(loss, 5))
[0.10536 0.82807 0.1011  1.77196]
 loss = tf.keras.backend.categorical_crossentropy(a, a) print(np.around(loss, 5)) [0. 0. 0. 0.]
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/keras/utils/to_categorical