Unpacks user-provided data tuple.
tf.keras.utils.unpack_x_y_sample_weight(
    data
)
  This is a convenience utility to be used when overriding Model.train_step, Model.test_step, or Model.predict_step. This utility makes it easy to support data of the form (x,), (x, y), or (x, y, sample_weight).
features_batch = tf.ones((10, 5)) labels_batch = tf.zeros((10, 5)) data = (features_batch, labels_batch) # `y` and `sample_weight` will default to `None` if not provided. x, y, sample_weight = tf.keras.utils.unpack_x_y_sample_weight(data) sample_weight is None True
Example in overridden Model.train_step:
class MyModel(tf.keras.Model):
  def train_step(self, data):
    # If `sample_weight` is not provided, all samples will be weighted
    # equally.
    x, y, sample_weight = tf.keras.utils.unpack_x_y_sample_weight(data)
    with tf.GradientTape() as tape:
      y_pred = self(x, training=True)
      loss = self.compiled_loss(
        y, y_pred, sample_weight, regularization_losses=self.losses)
      trainable_variables = self.trainable_variables
      gradients = tape.gradient(loss, trainable_variables)
      self.optimizer.apply_gradients(zip(gradients, trainable_variables))
    self.compiled_metrics.update_state(y, y_pred, sample_weight)
    return {m.name: m.result() for m in self.metrics}
  
| Args | |
|---|---|
| data | A tuple of the form (x,),(x, y), or(x, y, sample_weight). | 
| Returns | |
|---|---|
| The unpacked tuple, with Nones foryandsample_weightif they are not provided. | 
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/keras/utils/unpack_x_y_sample_weight