tf.linalg.eigvalsh
        Computes the eigenvalues of one or more self-adjoint matrices.
  
tf.linalg.eigvalsh(
    tensor, name=None
)
  
Note: If your program backpropagates through this function, you should replace it with a call to tf.linalg.eigh (possibly ignoring the second output) to avoid computing the eigen decomposition twice. This is because the eigenvectors are used to compute the gradient w.r.t. the eigenvalues. See _SelfAdjointEigV2Grad in linalg_grad.py.
  
 
 | Args | 
|---|
 
 | tensor | Tensorof shape[..., N, N]. | 
 | name | string, optional name of the operation. | 
 
  
 
 | Returns | 
|---|
 
 | e | Eigenvalues. Shape is [..., N]. The vectore[..., :]contains theNeigenvalues oftensor[..., :, :]. |