Compute the lower regularized incomplete Gamma function P(a, x).
tf.math.igamma(
    a, x, name=None
)
  The lower regularized incomplete Gamma function is defined as:
\(P(a, x) = gamma(a, x) / Gamma(a) = 1 - Q(a, x)\)
where
\(gamma(a, x) = \\int_{0}^{x} t^{a-1} exp(-t) dt\)
is the lower incomplete Gamma function.
Note, above Q(a, x) (Igammac) is the upper regularized complete Gamma function.
| Args | |
|---|---|
| a | A Tensor. Must be one of the following types:bfloat16,half,float32,float64. | 
| x | A Tensor. Must have the same type asa. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensor. Has the same type asa. | 
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/math/igamma