| View source on GitHub | 
Logical XOR function.
tf.math.logical_xor(
    x, y, name='LogicalXor'
)
  x ^ y = (x | y) & ~(x & y)
Requires that x and y have the same shape or have broadcast-compatible shapes. For example, x and y can be:
bool
tf.Tensor of type bool and one single bool, where the result will be calculated by applying logical XOR with the single element to each element in the larger Tensor.tf.Tensor objects of type bool of the same shape. In this case, the result will be the element-wise logical XOR of the two input tensors.a = tf.constant([True]) b = tf.constant([False]) tf.math.logical_xor(a, b) <tf.Tensor: shape=(1,), dtype=bool, numpy=array([ True])>
c = tf.constant([True]) x = tf.constant([False, True, True, False]) tf.math.logical_xor(c, x) <tf.Tensor: shape=(4,), dtype=bool, numpy=array([ True, False, False, True])>
y = tf.constant([False, False, True, True]) z = tf.constant([False, True, False, True]) tf.math.logical_xor(y, z) <tf.Tensor: shape=(4,), dtype=bool, numpy=array([False, True, True, False])>
| Args | |
|---|---|
| x | A tf.Tensortype bool. | 
| y | A tf.Tensorof type bool. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A tf.Tensorof type bool with the same size as that of x or y. | 
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/math/logical_xor