Returns the min of x and y (i.e. x < y ? x : y) element-wise.
tf.math.minimum(
    x, y, name=None
)
  Both inputs are number-type tensors (except complex). minimum expects that both tensors have the same dtype.
x = tf.constant([0., 0., 0., 0.]) y = tf.constant([-5., -2., 0., 3.]) tf.math.minimum(x, y) <tf.Tensor: shape=(4,), dtype=float32, numpy=array([-5., -2., 0., 0.], dtype=float32)>
Note that minimum supports broadcast semantics for x and y.
x = tf.constant([-5., 0., 0., 0.]) y = tf.constant([-3.]) tf.math.minimum(x, y) <tf.Tensor: shape=(4,), dtype=float32, numpy=array([-5., -3., -3., -3.], dtype=float32)>
The reduction version of this elementwise operation is tf.math.reduce_min
| Args | |
|---|---|
| x | A Tensor. Must be one of the following types:bfloat16,half,float32,float64,int8,uint8,int16,uint16,int32,uint32,int64,uint64. | 
| y | A Tensor. Must have the same type asx. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensor. Has the same type asx. | 
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/math/minimum