| View source on GitHub | 
Computes sigmoid of x element-wise.
tf.math.sigmoid(
    x, name=None
)
  Formula for calculating \(\mathrm{sigmoid}(x) = y = 1 / (1 + \exp(-x))\).
For \(x \in (-\infty, \infty)\), \(\mathrm{sigmoid}(x) \in (0, 1)\).
If a positive number is large, then its sigmoid will approach to 1 since the formula will be y = <large_num> / (1 + <large_num>)
x = tf.constant([0.0, 1.0, 50.0, 100.0]) tf.math.sigmoid(x) <tf.Tensor: shape=(4,), dtype=float32, numpy=array([0.5, 0.7310586, 1.0, 1.0], dtype=float32)>
If a negative number is large, its sigmoid will approach to 0 since the formula will be y = 1 / (1 + <large_num>)
x = tf.constant([-100.0, -50.0, -1.0, 0.0])
tf.math.sigmoid(x)
<tf.Tensor: shape=(4,), dtype=float32, numpy=
array([0.0000000e+00, 1.9287499e-22, 2.6894143e-01, 0.5],
      dtype=float32)>
  
| Args | |
|---|---|
| x | A Tensor with type float16,float32,float64,complex64, orcomplex128. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensor with the same type as x. | 
x = tf.constant([-128.0, 0.0, 128.0], dtype=tf.float32) tf.sigmoid(x) <tf.Tensor: shape=(3,), dtype=float32, numpy=array([0. , 0.5, 1. ], dtype=float32)>
scipy compatibility
Equivalent to scipy.special.expit
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/math/sigmoid