| View source on GitHub |
Finds values and indices of the k largest entries for the last dimension.
tf.math.top_k(
input, k=1, sorted=True, name=None
)
If the input is a vector (rank=1), finds the k largest entries in the vector and outputs their values and indices as vectors. Thus values[j] is the j-th largest entry in input, and its index is indices[j].
result = tf.math.top_k([1, 2, 98, 1, 1, 99, 3, 1, 3, 96, 4, 1],
k=3)
result.values.numpy()
array([99, 98, 96], dtype=int32)
result.indices.numpy()
array([5, 2, 9], dtype=int32)
For matrices (resp. higher rank input), computes the top k entries in each row (resp. vector along the last dimension). Thus,
input = tf.random.normal(shape=(3,4,5,6)) k = 2 values, indices = tf.math.top_k(input, k=k) values.shape.as_list() [3, 4, 5, 2] values.shape == indices.shape == input.shape[:-1] + [k] True
The indices can be used to gather from a tensor who's shape matches input.
gathered_values = tf.gather(input, indices, batch_dims=-1) assert tf.reduce_all(gathered_values == values)
If two elements are equal, the lower-index element appears first.
result = tf.math.top_k([1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0],
k=3)
result.indices.numpy()
array([0, 1, 3], dtype=int32)
| Args | |
|---|---|
input | 1-D or higher Tensor with last dimension at least k. |
k | 0-D int32 Tensor. Number of top elements to look for along the last dimension (along each row for matrices). |
sorted | If true the resulting k elements will be sorted by the values in descending order. |
name | Optional name for the operation. |
| Returns | |
|---|---|
| A tuple with two named fields: | |
values | The k largest elements along each last dimensional slice. |
indices | The indices of values within the last dimension of input. |
© 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/math/top_k