Fake-quantize the 'inputs' tensor of type float via global float scalars
tf.quantization.fake_quant_with_min_max_vars(
    inputs, min, max, num_bits=8, narrow_range=False, name=None
)
  Fake-quantize the inputs tensor of type float via global float scalars min and max to outputs tensor of same shape as inputs.
Attributes
[min; max] define the clamping range for the inputs data.inputs values are quantized into the quantization range ( [0; 2^num_bits - 1] when narrow_range is false and [1; 2^num_bits - 1] when it is true) and then de-quantized and output as floats in [min; max] interval.num_bits is the bitwidth of the quantization; between 2 and 16, inclusive.Before quantization, min and max values are adjusted with the following logic. It is suggested to have min <= 0 <= max. If 0 is not in the range of values, the behavior can be unexpected:
0 < min < max: min_adj = 0 and max_adj = max - min.min < max < 0: min_adj = min - max and max_adj = 0.min <= 0 <= max: scale = (max - min) / (2^num_bits - 1), min_adj = scale * round(min / scale) and max_adj = max + min_adj - min.This operation has a gradient and thus allows for training min and max values.
| Args | |
|---|---|
| inputs | A Tensorof typefloat32. | 
| min | A Tensorof typefloat32. | 
| max | A Tensorof typefloat32. | 
| num_bits | An optional int. Defaults to8. | 
| narrow_range | An optional bool. Defaults toFalse. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensorof typefloat32. | 
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/quantization/fake_quant_with_min_max_vars