Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation.
tf.quantization.fake_quant_with_min_max_vars_per_channel_gradient(
    gradients, inputs, min, max, num_bits=8, narrow_range=False, name=None
)
   
| Args | |
|---|---|
| gradients | A Tensorof typefloat32. Backpropagated gradients above the FakeQuantWithMinMaxVars operation, shape one of:[d],[b, d],[b, h, w, d]. | 
| inputs | A Tensorof typefloat32. Values passed as inputs to the FakeQuantWithMinMaxVars operation, shape same asgradients. min, max: Quantization interval, floats of shape[d]. | 
| min | A Tensorof typefloat32. | 
| max | A Tensorof typefloat32. | 
| num_bits | An optional int. Defaults to8. The bitwidth of the quantization; between 2 and 16, inclusive. | 
| narrow_range | An optional bool. Defaults toFalse. Whether to quantize into 2^num_bits - 1 distinct values. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A tuple of Tensorobjects (backprops_wrt_input, backprop_wrt_min, backprop_wrt_max). | |
| backprops_wrt_input | A Tensorof typefloat32. | 
| backprop_wrt_min | A Tensorof typefloat32. | 
| backprop_wrt_max | A Tensorof typefloat32. | 
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/quantization/fake_quant_with_min_max_vars_per_channel_gradient