| View source on GitHub | 
Type specification for a tf.RaggedTensor.
Inherits From: TypeSpec, TraceType
tf.RaggedTensorSpec(
    shape=None,
    dtype=tf.dtypes.float32,
    ragged_rank=None,
    row_splits_dtype=tf.dtypes.int64,
    flat_values_spec=None
)
   
| Args | |
|---|---|
| shape | The shape of the RaggedTensor, or Noneto allow any shape. If a shape is specified, then all ragged dimensions must have sizeNone. | 
| dtype | tf.DTypeof values in the RaggedTensor. | 
| ragged_rank | Python integer, the number of times the RaggedTensor's flat_values is partitioned. Defaults to shape.ndims - 1. | 
| row_splits_dtype | dtypefor the RaggedTensor'srow_splitstensor. One oftf.int32ortf.int64. | 
| flat_values_spec | TypeSpec for flat_value of the RaggedTensor. It shall be provided when the flat_values is a CompositeTensor rather then Tensor. If both dtypeandflat_values_specand are provided,dtypemust be the same asflat_values_spec.dtype. (experimental) | 
| Attributes | |
|---|---|
| dtype | The tf.dtypes.DTypespecified by this type for the RaggedTensor.rt = tf.ragged.constant([["a"], ["b", "c"]], dtype=tf.string) tf.type_spec_from_value(rt).dtype tf.string | 
| flat_values_spec | The TypeSpecof the flat_values of RaggedTensor. | 
| ragged_rank | The number of times the RaggedTensor's flat_values is partitioned. Defaults to  values = tf.ragged.constant([[1, 2, 3], [4], [5, 6], [7, 8, 9, 10]]) tf.type_spec_from_value(values).ragged_rank 1 rt1 = tf.RaggedTensor.from_uniform_row_length(values, 2) tf.type_spec_from_value(rt1).ragged_rank 2 | 
| row_splits_dtype | The tf.dtypes.DTypeof the RaggedTensor'srow_splits.rt = tf.ragged.constant([[1, 2, 3], [4]], row_splits_dtype=tf.int64) tf.type_spec_from_value(rt).row_splits_dtype tf.int64 | 
| shape | The statically known shape of the RaggedTensor. rt = tf.ragged.constant([[0], [1, 2]]) tf.type_spec_from_value(rt).shape TensorShape([2, None]) rt = tf.ragged.constant([[[0, 1]], [[1, 2], [3, 4]]], ragged_rank=1) tf.type_spec_from_value(rt).shape TensorShape([2, None, 2]) | 
| value_type | The Python type for values that are compatible with this TypeSpec. In particular, all values that are compatible with this TypeSpec must be an instance of this type. | 
from_value
@classmethod
from_value(
    value
)
 is_compatible_with
is_compatible_with(
    spec_or_value
)
 Returns true if spec_or_value is compatible with this TypeSpec.
Prefer using "is_subtype_of" and "most_specific_common_supertype" wherever possible.
| Args | |
|---|---|
| spec_or_value | A TypeSpec or TypeSpec associated value to compare against. | 
is_subtype_of
is_subtype_of(
    other: tf.types.experimental.TraceType
) -> bool
 Returns True if self is a subtype of other.
Implements the tf.types.experimental.func.TraceType interface.
If not overridden by a subclass, the default behavior is to assume the TypeSpec is covariant upon attributes that implement TraceType and invariant upon rest of the attributes as well as the structure and type of the TypeSpec.
| Args | |
|---|---|
| other | A TraceType object. | 
most_specific_common_supertype
most_specific_common_supertype(
    others: Sequence[tf.types.experimental.TraceType]
) -> Optional['TypeSpec']
 Returns the most specific supertype TypeSpec of self and others.
Implements the tf.types.experimental.func.TraceType interface.
If not overridden by a subclass, the default behavior is to assume the TypeSpec is covariant upon attributes that implement TraceType and invariant upon rest of the attributes as well as the structure and type of the TypeSpec.
| Args | |
|---|---|
| others | A sequence of TraceTypes. | 
most_specific_compatible_type
most_specific_compatible_type(
    other: 'TypeSpec'
) -> 'TypeSpec'
 Returns the most specific TypeSpec compatible with self and other. (deprecated)
Deprecated. Please use most_specific_common_supertype instead. Do not override this function.
| Args | |
|---|---|
| other | A TypeSpec. | 
| Raises | |
|---|---|
| ValueError | If there is no TypeSpec that is compatible with both selfandother. | 
__eq__
__eq__(
    other
) -> bool
 Return self==value.
__ne__
__ne__(
    other
) -> bool
 Return self!=value.
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/RaggedTensorSpec