| View source on GitHub | 
A tf.Tensor represents a multidimensional array of elements.
tf.Tensor(
    op, value_index, dtype
)
  All elements are of a single known data type.
When writing a TensorFlow program, the main object that is manipulated and passed around is the tf.Tensor.
A tf.Tensor has the following properties:
TensorFlow supports eager execution and graph execution. In eager execution, operations are evaluated immediately. In graph execution, a computational graph is constructed for later evaluation.
TensorFlow defaults to eager execution. In the example below, the matrix multiplication results are calculated immediately.
# Compute some values using a Tensor c = tf.constant([[1.0, 2.0], [3.0, 4.0]]) d = tf.constant([[1.0, 1.0], [0.0, 1.0]]) e = tf.matmul(c, d) print(e) tf.Tensor( [[1. 3.] [3. 7.]], shape=(2, 2), dtype=float32)
Note that during eager execution, you may discover your Tensors are actually of type EagerTensor. This is an internal detail, but it does give you access to a useful function, numpy:
type(e) <class '...ops.EagerTensor'> print(e.numpy()) [[1. 3.] [3. 7.]]
In TensorFlow, tf.functions are a common way to define graph execution.
A Tensor's shape (that is, the rank of the Tensor and the size of each dimension) may not always be fully known. In tf.function definitions, the shape may only be partially known.
Most operations produce tensors of fully-known shapes if the shapes of their inputs are also fully known, but in some cases it's only possible to find the shape of a tensor at execution time.
A number of specialized tensors are available: see tf.Variable, tf.constant, tf.placeholder, tf.sparse.SparseTensor, and tf.RaggedTensor.
a = np.array([1, 2, 3]) b = tf.constant(a) a[0] = 4 print(b) # tf.Tensor([4 2 3], shape=(3,), dtype=int64)
Note: this is an implementation detail that is subject to change and users should not rely on this behaviour.
For more on Tensors, see the guide.
| Args | |
|---|---|
| op | An Operation.Operationthat computes this tensor. | 
| value_index | An int. Index of the operation's endpoint that produces this tensor. | 
| dtype | A DType. Type of elements stored in this tensor. | 
| Raises | |
|---|---|
| TypeError | If the op is not an Operation. | 
| Attributes | |
|---|---|
| device | The name of the device on which this tensor will be produced, or None. | 
| dtype | The DTypeof elements in this tensor. | 
| graph | The Graphthat contains this tensor. | 
| name | The string name of this tensor. | 
| op | The Operationthat produces this tensor as an output. | 
| shape | Returns a tf.TensorShapethat represents the shape of this tensor.t = tf.constant([1,2,3,4,5]) t.shape TensorShape([5]) 
 In a  A  See  | 
| value_index | The index of this tensor in the outputs of its Operation. | 
consumersconsumers()
Returns a list of Operations that consume this tensor.
| Returns | |
|---|---|
| A list of Operations. | 
eval
eval(
    feed_dict=None, session=None
)
 Evaluates this tensor in a Session.
Note: If you are not usingcompat.v1libraries, you should not need this, (orfeed_dictorSession). In eager execution (or withintf.function) you do not need to calleval.
Calling this method will execute all preceding operations that produce the inputs needed for the operation that produces this tensor.
Note: Before invokingTensor.eval(), its graph must have been launched in a session, and either a default session must be available, orsessionmust be specified explicitly.
| Args | |
|---|---|
| feed_dict | A dictionary that maps Tensorobjects to feed values. Seetf.Session.runfor a description of the valid feed values. | 
| session | (Optional.) The Sessionto be used to evaluate this tensor. If none, the default session will be used. | 
| Returns | |
|---|---|
| A numpy array corresponding to the value of this tensor. | 
experimental_refexperimental_ref()
DEPRECATED FUNCTION
get_shapeget_shape()
Returns a tf.TensorShape that represents the shape of this tensor.
In eager execution the shape is always fully-known.
a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) print(a.shape) (2, 3)
tf.Tensor.get_shape() is equivalent to tf.Tensor.shape.
When executing in a tf.function or building a model using tf.keras.Input, Tensor.shape may return a partial shape (including None for unknown dimensions). See tf.TensorShape for more details.
inputs = tf.keras.Input(shape = [10]) # Unknown batch size print(inputs.shape) (None, 10)
The shape is computed using shape inference functions that are registered for each tf.Operation.
The returned tf.TensorShape is determined at build time, without executing the underlying kernel. It is not a tf.Tensor. If you need a shape tensor, either convert the tf.TensorShape to a tf.constant, or use the tf.shape(tensor) function, which returns the tensor's shape at execution time.
This is useful for debugging and providing early errors. For example, when tracing a tf.function, no ops are being executed, shapes may be unknown (See the Concrete Functions Guide for details).
@tf.function
def my_matmul(a, b):
  result = a@b
  # the `print` executes during tracing.
  print("Result shape: ", result.shape)
  return result
 The shape inference functions propagate shapes to the extent possible:
f = my_matmul.get_concrete_function( tf.TensorSpec([None,3]), tf.TensorSpec([3,5])) Result shape: (None, 5)
Tracing may fail if a shape missmatch can be detected:
cf = my_matmul.get_concrete_function( tf.TensorSpec([None,3]), tf.TensorSpec([4,5])) Traceback (most recent call last): ValueError: Dimensions must be equal, but are 3 and 4 for 'matmul' (op: 'MatMul') with input shapes: [?,3], [4,5].
In some cases, the inferred shape may have unknown dimensions. If the caller has additional information about the values of these dimensions, tf.ensure_shape or Tensor.set_shape() can be used to augment the inferred shape.
@tf.function
def my_fun(a):
  a = tf.ensure_shape(a, [5, 5])
  # the `print` executes during tracing.
  print("Result shape: ", a.shape)
  return a
 cf = my_fun.get_concrete_function( tf.TensorSpec([None, None])) Result shape: (5, 5)
| Returns | |
|---|---|
| A tf.TensorShaperepresenting the shape of this tensor. | 
refref()
Returns a hashable reference object to this Tensor.
The primary use case for this API is to put tensors in a set/dictionary. We can't put tensors in a set/dictionary as tensor.__hash__() is no longer available starting Tensorflow 2.0.
The following will raise an exception starting 2.0
x = tf.constant(5)
y = tf.constant(10)
z = tf.constant(10)
tensor_set = {x, y, z}
Traceback (most recent call last):
TypeError: Tensor is unhashable. Instead, use tensor.ref() as the key.
tensor_dict = {x: 'five', y: 'ten'}
Traceback (most recent call last):
TypeError: Tensor is unhashable. Instead, use tensor.ref() as the key.
 Instead, we can use tensor.ref().
tensor_set = {x.ref(), y.ref(), z.ref()}
x.ref() in tensor_set
True
tensor_dict = {x.ref(): 'five', y.ref(): 'ten', z.ref(): 'ten'}
tensor_dict[y.ref()]
'ten'
 Also, the reference object provides .deref() function that returns the original Tensor.
x = tf.constant(5) x.ref().deref() <tf.Tensor: shape=(), dtype=int32, numpy=5>
set_shape
set_shape(
    shape
)
 Updates the shape of this tensor.
Note: It is recommended to usetf.ensure_shapeinstead ofTensor.set_shape, becausetf.ensure_shapeprovides better checking for programming errors and can create guarantees for compiler optimization.
With eager execution this operates as a shape assertion. Here the shapes match:
t = tf.constant([[1,2,3]]) t.set_shape([1, 3])
Passing a None in the new shape allows any value for that axis:
t.set_shape([1,None])
An error is raised if an incompatible shape is passed.
t.set_shape([1,5]) Traceback (most recent call last): ValueError: Tensor's shape (1, 3) is not compatible with supplied shape [1, 5]
When executing in a tf.function, or building a model using tf.keras.Input, Tensor.set_shape will merge the given shape with the current shape of this tensor, and set the tensor's shape to the merged value (see tf.TensorShape.merge_with for details):
t = tf.keras.Input(shape=[None, None, 3]) print(t.shape) (None, None, None, 3)
Dimensions set to None are not updated:
t.set_shape([None, 224, 224, None]) print(t.shape) (None, 224, 224, 3)
The main use case for this is to provide additional shape information that cannot be inferred from the graph alone.
For example if you know all the images in a dataset have shape [28,28,3] you can set it with tf.set_shape:
@tf.function
def load_image(filename):
  raw = tf.io.read_file(filename)
  image = tf.image.decode_png(raw, channels=3)
  # the `print` executes during tracing.
  print("Initial shape: ", image.shape)
  image.set_shape([28, 28, 3])
  print("Final shape: ", image.shape)
  return image
 Trace the function, see the Concrete Functions Guide for details.
cf = load_image.get_concrete_function(
    tf.TensorSpec([], dtype=tf.string))
Initial shape:  (None, None, 3)
Final shape: (28, 28, 3)
 Similarly the tf.io.parse_tensor function could return a tensor with any shape, even the tf.rank is unknown. If you know that all your serialized tensors will be 2d, set it with set_shape:
@tf.function
def my_parse(string_tensor):
  result = tf.io.parse_tensor(string_tensor, out_type=tf.float32)
  # the `print` executes during tracing.
  print("Initial shape: ", result.shape)
  result.set_shape([None, None])
  print("Final shape: ", result.shape)
  return result
 Trace the function
concrete_parse = my_parse.get_concrete_function(
    tf.TensorSpec([], dtype=tf.string))
Initial shape:  <unknown>
Final shape:  (None, None)
 t = tf.ones([5,3], dtype=tf.float32) serialized = tf.io.serialize_tensor(t) print(serialized.dtype) <dtype: 'string'> print(serialized.shape) () t2 = concrete_parse(serialized) print(t2.shape) (5, 3)
# Serialize a rank-3 tensor t = tf.ones([5,5,5], dtype=tf.float32) serialized = tf.io.serialize_tensor(t) # The function still runs, even though it `set_shape([None,None])` t2 = concrete_parse(serialized) print(t2.shape) (5, 5, 5)
| Args | |
|---|---|
| shape | A TensorShaperepresenting the shape of this tensor, aTensorShapeProto, a list, a tuple, or None. | 
| Raises | |
|---|---|
| ValueError | If shapeis not compatible with the current shape of this tensor. | 
__abs__
__abs__(
    name=None
)
 Computes the absolute value of a tensor.
Given a tensor of integer or floating-point values, this operation returns a tensor of the same type, where each element contains the absolute value of the corresponding element in the input.
Given a tensor x of complex numbers, this operation returns a tensor of type float32 or float64 that is the absolute value of each element in x. For a complex number \(a + bj\), its absolute value is computed as \(\sqrt{a^2 + b^2}\).
# real number x = tf.constant([-2.25, 3.25]) tf.abs(x) <tf.Tensor: shape=(2,), dtype=float32, numpy=array([2.25, 3.25], dtype=float32)>
# complex number
x = tf.constant([[-2.25 + 4.75j], [-3.25 + 5.75j]])
tf.abs(x)
<tf.Tensor: shape=(2, 1), dtype=float64, numpy=
array([[5.25594901],
       [6.60492241]])>
  
| Args | |
|---|---|
| x | A TensororSparseTensorof typefloat16,float32,float64,int32,int64,complex64orcomplex128. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A TensororSparseTensorof the same size, type and sparsity asx, with absolute values. Note, forcomplex64orcomplex128input, the returnedTensorwill be of typefloat32orfloat64, respectively.If  | 
__add__
__add__(
    y
)
 The operation invoked by the Tensor.add operator.
This method is exposed in TensorFlow's API so that library developers can register dispatching for Tensor.add to allow it to handle custom composite tensors & other custom objects.
The API symbol is not intended to be called by users directly and does appear in TensorFlow's generated documentation.
| Args | |
|---|---|
| x | The left-hand side of the +operator. | 
| y | The right-hand side of the +operator. | 
| name | an optional name for the operation. | 
| Returns | |
|---|---|
| The result of the elementwise +operation. | 
__and__
__and__(
    y
)
 __array__
__array__(
    dtype=None
)
 __bool____bool__()
Dummy method to prevent a tensor from being used as a Python bool.
This overload raises a TypeError when the user inadvertently treats a Tensor as a boolean (most commonly in an if or while statement), in code that was not converted by AutoGraph. For example:
if tf.constant(True): # Will raise. # ... if tf.constant(5) < tf.constant(7): # Will raise. # ...
| Raises | |
|---|---|
| TypeError. | 
__div__
__div__(
    y
)
 Divides x / y elementwise (using Python 2 division operator semantics). (deprecated)
This function divides x and y, forcing Python 2 semantics. That is, if x and y are both integers then the result will be an integer. This is in contrast to Python 3, where division with / is always a float while division with // is always an integer.
| Args | |
|---|---|
| x | Tensornumerator of real numeric type. | 
| y | Tensordenominator of real numeric type. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| x / yreturns the quotient of x and y. | 
Migrate to TF2
This function is deprecated in TF2. Prefer using the Tensor division operator, tf.divide, or tf.math.divide, which obey the Python 3 division operator semantics.
__eq__
__eq__(
    other
)
 The operation invoked by the Tensor.eq operator.
Compares two tensors element-wise for equality if they are broadcast-compatible; or returns False if they are not broadcast-compatible. (Note that this behavior differs from tf.math.equal, which raises an exception if the two tensors are not broadcast-compatible.)
This method is exposed in TensorFlow's API so that library developers can register dispatching for Tensor.eq to allow it to handle custom composite tensors & other custom objects.
The API symbol is not intended to be called by users directly and does appear in TensorFlow's generated documentation.
| Args | |
|---|---|
| self | The left-hand side of the ==operator. | 
| other | The right-hand side of the ==operator. | 
| Returns | |
|---|---|
| The result of the elementwise ==operation, orFalseif the arguments are not broadcast-compatible. | 
__floordiv__
__floordiv__(
    y
)
 Divides x / y elementwise, rounding toward the most negative integer.
Mathematically, this is equivalent to floor(x / y). For example: floor(8.4 / 4.0) = floor(2.1) = 2.0 floor(-8.4 / 4.0) = floor(-2.1) = -3.0 This is equivalent to the '//' operator in Python 3.0 and above.
Note:xandymust have the same type, and the result will have the same type as well.
| Args | |
|---|---|
| x | Tensornumerator of real numeric type. | 
| y | Tensordenominator of real numeric type. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| x / yrounded toward -infinity. | 
| Raises | |
|---|---|
| TypeError | If the inputs are complex. | 
__ge__
__ge__(
    y, name=None
)
 Returns the truth value of (x >= y) element-wise.
Note: math.greater_equal supports broadcasting. More about broadcasting here
 x = tf.constant([5, 4, 6, 7]) y = tf.constant([5, 2, 5, 10]) tf.math.greater_equal(x, y) ==> [True, True, True, False] x = tf.constant([5, 4, 6, 7]) y = tf.constant([5]) tf.math.greater_equal(x, y) ==> [True, False, True, True]
| Args | |
|---|---|
| x | A Tensor. Must be one of the following types:float32,float64,int32,uint8,int16,int8,int64,bfloat16,uint16,half,uint32,uint64. | 
| y | A Tensor. Must have the same type asx. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensorof typebool. | 
__getitem__
__getitem__(
    slice_spec, var=None
)
 Overload for Tensor.getitem.
This operation extracts the specified region from the tensor. The notation is similar to NumPy with the restriction that currently only support basic indexing. That means that using a non-scalar tensor as input is not currently allowed.
# Strip leading and trailing 2 elements foo = tf.constant([1,2,3,4,5,6]) print(foo[2:-2].eval()) # => [3,4] # Skip every other row and reverse the order of the columns foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]]) print(foo[::2,::-1].eval()) # => [[3,2,1], [9,8,7]] # Use scalar tensors as indices on both dimensions print(foo[tf.constant(0), tf.constant(2)].eval()) # => 3 # Insert another dimension foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]]) print(foo[tf.newaxis, :, :].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]] print(foo[:, tf.newaxis, :].eval()) # => [[[1,2,3]], [[4,5,6]], [[7,8,9]]] print(foo[:, :, tf.newaxis].eval()) # => [[[1],[2],[3]], [[4],[5],[6]], [[7],[8],[9]]] # Ellipses (3 equivalent operations) foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]]) print(foo[tf.newaxis, :, :].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]] print(foo[tf.newaxis, ...].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]] print(foo[tf.newaxis].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]] # Masks foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]]) print(foo[foo > 2].eval()) # => [3, 4, 5, 6, 7, 8, 9]
tf.newaxis is None as in NumPy.slice_spec
This method is exposed in TensorFlow's API so that library developers can register dispatching for Tensor.getitem to allow it to handle custom composite tensors & other custom objects.
The API symbol is not intended to be called by users directly and does appear in TensorFlow's generated documentation.
| Args | |
|---|---|
| tensor | An ops.Tensor object. | 
| slice_spec | The arguments to Tensor.getitem. | 
| var | In the case of variable slice assignment, the Variable object to slice (i.e. tensor is the read-only view of this variable). | 
| Returns | |
|---|---|
| The appropriate slice of "tensor", based on "slice_spec". | 
| Raises | |
|---|---|
| ValueError | If a slice range is negative size. | 
| TypeError | If the slice indices aren't int, slice, ellipsis, tf.newaxis or scalar int32/int64 tensors. | 
__gt__
__gt__(
    y, name=None
)
 Returns the truth value of (x > y) element-wise.
Note: math.greater supports broadcasting. More about broadcasting here
 x = tf.constant([5, 4, 6]) y = tf.constant([5, 2, 5]) tf.math.greater(x, y) ==> [False, True, True] x = tf.constant([5, 4, 6]) y = tf.constant([5]) tf.math.greater(x, y) ==> [False, False, True]
| Args | |
|---|---|
| x | A Tensor. Must be one of the following types:float32,float64,int32,uint8,int16,int8,int64,bfloat16,uint16,half,uint32,uint64. | 
| y | A Tensor. Must have the same type asx. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensorof typebool. | 
__invert__
__invert__(
    name=None
)
 __iter____iter__()
__le__
__le__(
    y, name=None
)
 Returns the truth value of (x <= y) element-wise.
Note: math.less_equal supports broadcasting. More about broadcasting here
 x = tf.constant([5, 4, 6]) y = tf.constant([5]) tf.math.less_equal(x, y) ==> [True, True, False] x = tf.constant([5, 4, 6]) y = tf.constant([5, 6, 6]) tf.math.less_equal(x, y) ==> [True, True, True]
| Args | |
|---|---|
| x | A Tensor. Must be one of the following types:float32,float64,int32,uint8,int16,int8,int64,bfloat16,uint16,half,uint32,uint64. | 
| y | A Tensor. Must have the same type asx. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensorof typebool. | 
__len____len__()
__lt__
__lt__(
    y, name=None
)
 Returns the truth value of (x < y) element-wise.
Note: math.less supports broadcasting. More about broadcasting here
 x = tf.constant([5, 4, 6]) y = tf.constant([5]) tf.math.less(x, y) ==> [False, True, False] x = tf.constant([5, 4, 6]) y = tf.constant([5, 6, 7]) tf.math.less(x, y) ==> [False, True, True]
| Args | |
|---|---|
| x | A Tensor. Must be one of the following types:float32,float64,int32,uint8,int16,int8,int64,bfloat16,uint16,half,uint32,uint64. | 
| y | A Tensor. Must have the same type asx. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensorof typebool. | 
__matmul__
__matmul__(
    y
)
 Multiplies matrix a by matrix b, producing a * b.
The inputs must, following any transpositions, be tensors of rank >= 2 where the inner 2 dimensions specify valid matrix multiplication dimensions, and any further outer dimensions specify matching batch size.
Both matrices must be of the same type. The supported types are: bfloat16, float16, float32, float64, int32, int64, complex64, complex128.
Either matrix can be transposed or adjointed (conjugated and transposed) on the fly by setting one of the corresponding flag to True. These are False by default.
If one or both of the matrices contain a lot of zeros, a more efficient multiplication algorithm can be used by setting the corresponding a_is_sparse or b_is_sparse flag to True. These are False by default. This optimization is only available for plain matrices (rank-2 tensors) with datatypes bfloat16 or float32.
A simple 2-D tensor matrix multiplication:
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
a  # 2-D tensor
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[1, 2, 3],
       [4, 5, 6]], dtype=int32)>
b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])
b  # 2-D tensor
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[ 7,  8],
       [ 9, 10],
       [11, 12]], dtype=int32)>
c = tf.matmul(a, b)
c  # `a` * `b`
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[ 58,  64],
       [139, 154]], dtype=int32)>
 A batch matrix multiplication with batch shape [2]:
a = tf.constant(np.arange(1, 13, dtype=np.int32), shape=[2, 2, 3])
a  # 3-D tensor
<tf.Tensor: shape=(2, 2, 3), dtype=int32, numpy=
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]], dtype=int32)>
b = tf.constant(np.arange(13, 25, dtype=np.int32), shape=[2, 3, 2])
b  # 3-D tensor
<tf.Tensor: shape=(2, 3, 2), dtype=int32, numpy=
array([[[13, 14],
        [15, 16],
        [17, 18]],
       [[19, 20],
        [21, 22],
        [23, 24]]], dtype=int32)>
c = tf.matmul(a, b)
c  # `a` * `b`
<tf.Tensor: shape=(2, 2, 2), dtype=int32, numpy=
array([[[ 94, 100],
        [229, 244]],
       [[508, 532],
        [697, 730]]], dtype=int32)>
 Since python >= 3.5 the @ operator is supported (see PEP 465). In TensorFlow, it simply calls the tf.matmul() function, so the following lines are equivalent:
d = a @ b @ [[10], [11]] d = tf.matmul(tf.matmul(a, b), [[10], [11]])
| Args | |
|---|---|
| a | tf.Tensorof typefloat16,float32,float64,int32,complex64,complex128and rank > 1. | 
| b | tf.Tensorwith same type and rank asa. | 
| transpose_a | If True,ais transposed before multiplication. | 
| transpose_b | If True,bis transposed before multiplication. | 
| adjoint_a | If True,ais conjugated and transposed before multiplication. | 
| adjoint_b | If True,bis conjugated and transposed before multiplication. | 
| a_is_sparse | If True,ais treated as a sparse matrix. Notice, this does not supporttf.sparse.SparseTensor, it just makes optimizations that assume most values inaare zero. Seetf.sparse.sparse_dense_matmulfor some support fortf.sparse.SparseTensormultiplication. | 
| b_is_sparse | If True,bis treated as a sparse matrix. Notice, this does not supporttf.sparse.SparseTensor, it just makes optimizations that assume most values inaare zero. Seetf.sparse.sparse_dense_matmulfor some support fortf.sparse.SparseTensormultiplication. | 
| output_type | The output datatype if needed. Defaults to None in which case the output_type is the same as input type. Currently only works when input tensors are type (u)int8 and output_type can be int32. | 
| name | Name for the operation (optional). | 
| Returns | |
|---|---|
| A tf.Tensorof the same type asaandbwhere each inner-most matrix is the product of the corresponding matrices inaandb, e.g. if all transpose or adjoint attributes areFalse:
 | |
| Note | This is matrix product, not element-wise product. | 
| Raises | |
|---|---|
| ValueError | If transpose_aandadjoint_a, ortranspose_bandadjoint_bare both set toTrue. | 
| TypeError | If output_type is specified but the types of a,bandoutput_typeis not (u)int8, (u)int8 and int32. | 
__mod__
__mod__(
    y
)
 Returns element-wise remainder of division. When x < 0 xor y < 0 is
true, this follows Python semantics in that the result here is consistent with a flooring divide. E.g. floor(x / y) * y + mod(x, y) = x.
Note: math.floormod supports broadcasting. More about broadcasting here
  
| Args | |
|---|---|
| x | A Tensor. Must be one of the following types:int8,int16,int32,int64,uint8,uint16,uint32,uint64,bfloat16,half,float32,float64. | 
| y | A Tensor. Must have the same type asx. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensor. Has the same type asx. | 
__mul__
__mul__(
    y
)
 Dispatches cwise mul for "DenseDense" and "DenseSparse".
__ne__
__ne__(
    other
)
 The operation invoked by the Tensor.ne operator.
Compares two tensors element-wise for inequality if they are broadcast-compatible; or returns True if they are not broadcast-compatible. (Note that this behavior differs from tf.math.not_equal, which raises an exception if the two tensors are not broadcast-compatible.)
This method is exposed in TensorFlow's API so that library developers can register dispatching for Tensor.ne to allow it to handle custom composite tensors & other custom objects.
The API symbol is not intended to be called by users directly and does appear in TensorFlow's generated documentation.
| Args | |
|---|---|
| self | The left-hand side of the !=operator. | 
| other | The right-hand side of the !=operator. | 
| Returns | |
|---|---|
| The result of the elementwise !=operation, orTrueif the arguments are not broadcast-compatible. | 
__neg__
__neg__(
    name=None
)
 Computes numerical negative value element-wise.
I.e., \(y = -x\).
| Args | |
|---|---|
| x | A Tensor. Must be one of the following types:bfloat16,half,float32,float64,int8,int16,int32,int64,complex64,complex128. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensor. Has the same type asx.If  | 
__nonzero____nonzero__()
Dummy method to prevent a tensor from being used as a Python bool.
This is the Python 2.x counterpart to __bool__() above.
| Raises | |
|---|---|
| TypeError. | 
__or__
__or__(
    y
)
 __pow__
__pow__(
    y
)
 Computes the power of one value to another.
Given a tensor x and a tensor y, this operation computes \(x^y\) for corresponding elements in x and y. For example:
x = tf.constant([[2, 2], [3, 3]]) y = tf.constant([[8, 16], [2, 3]]) tf.pow(x, y) # [[256, 65536], [9, 27]]
| Args | |
|---|---|
| x | A Tensorof typefloat16,float32,float64,int32,int64,complex64, orcomplex128. | 
| y | A Tensorof typefloat16,float32,float64,int32,int64,complex64, orcomplex128. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensor. | 
__radd__
__radd__(
    x
)
 The operation invoked by the Tensor.add operator.
This method is exposed in TensorFlow's API so that library developers can register dispatching for Tensor.add to allow it to handle custom composite tensors & other custom objects.
The API symbol is not intended to be called by users directly and does appear in TensorFlow's generated documentation.
| Args | |
|---|---|
| x | The left-hand side of the +operator. | 
| y | The right-hand side of the +operator. | 
| name | an optional name for the operation. | 
| Returns | |
|---|---|
| The result of the elementwise +operation. | 
__rand__
__rand__(
    x
)
 __rdiv__
__rdiv__(
    x
)
 Divides x / y elementwise (using Python 2 division operator semantics). (deprecated)
This function divides x and y, forcing Python 2 semantics. That is, if x and y are both integers then the result will be an integer. This is in contrast to Python 3, where division with / is always a float while division with // is always an integer.
| Args | |
|---|---|
| x | Tensornumerator of real numeric type. | 
| y | Tensordenominator of real numeric type. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| x / yreturns the quotient of x and y. | 
Migrate to TF2
This function is deprecated in TF2. Prefer using the Tensor division operator, tf.divide, or tf.math.divide, which obey the Python 3 division operator semantics.
__rfloordiv__
__rfloordiv__(
    x
)
 Divides x / y elementwise, rounding toward the most negative integer.
Mathematically, this is equivalent to floor(x / y). For example: floor(8.4 / 4.0) = floor(2.1) = 2.0 floor(-8.4 / 4.0) = floor(-2.1) = -3.0 This is equivalent to the '//' operator in Python 3.0 and above.
Note:xandymust have the same type, and the result will have the same type as well.
| Args | |
|---|---|
| x | Tensornumerator of real numeric type. | 
| y | Tensordenominator of real numeric type. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| x / yrounded toward -infinity. | 
| Raises | |
|---|---|
| TypeError | If the inputs are complex. | 
__rmatmul__
__rmatmul__(
    x
)
 Multiplies matrix a by matrix b, producing a * b.
The inputs must, following any transpositions, be tensors of rank >= 2 where the inner 2 dimensions specify valid matrix multiplication dimensions, and any further outer dimensions specify matching batch size.
Both matrices must be of the same type. The supported types are: bfloat16, float16, float32, float64, int32, int64, complex64, complex128.
Either matrix can be transposed or adjointed (conjugated and transposed) on the fly by setting one of the corresponding flag to True. These are False by default.
If one or both of the matrices contain a lot of zeros, a more efficient multiplication algorithm can be used by setting the corresponding a_is_sparse or b_is_sparse flag to True. These are False by default. This optimization is only available for plain matrices (rank-2 tensors) with datatypes bfloat16 or float32.
A simple 2-D tensor matrix multiplication:
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
a  # 2-D tensor
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[1, 2, 3],
       [4, 5, 6]], dtype=int32)>
b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])
b  # 2-D tensor
<tf.Tensor: shape=(3, 2), dtype=int32, numpy=
array([[ 7,  8],
       [ 9, 10],
       [11, 12]], dtype=int32)>
c = tf.matmul(a, b)
c  # `a` * `b`
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[ 58,  64],
       [139, 154]], dtype=int32)>
 A batch matrix multiplication with batch shape [2]:
a = tf.constant(np.arange(1, 13, dtype=np.int32), shape=[2, 2, 3])
a  # 3-D tensor
<tf.Tensor: shape=(2, 2, 3), dtype=int32, numpy=
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]], dtype=int32)>
b = tf.constant(np.arange(13, 25, dtype=np.int32), shape=[2, 3, 2])
b  # 3-D tensor
<tf.Tensor: shape=(2, 3, 2), dtype=int32, numpy=
array([[[13, 14],
        [15, 16],
        [17, 18]],
       [[19, 20],
        [21, 22],
        [23, 24]]], dtype=int32)>
c = tf.matmul(a, b)
c  # `a` * `b`
<tf.Tensor: shape=(2, 2, 2), dtype=int32, numpy=
array([[[ 94, 100],
        [229, 244]],
       [[508, 532],
        [697, 730]]], dtype=int32)>
 Since python >= 3.5 the @ operator is supported (see PEP 465). In TensorFlow, it simply calls the tf.matmul() function, so the following lines are equivalent:
d = a @ b @ [[10], [11]] d = tf.matmul(tf.matmul(a, b), [[10], [11]])
| Args | |
|---|---|
| a | tf.Tensorof typefloat16,float32,float64,int32,complex64,complex128and rank > 1. | 
| b | tf.Tensorwith same type and rank asa. | 
| transpose_a | If True,ais transposed before multiplication. | 
| transpose_b | If True,bis transposed before multiplication. | 
| adjoint_a | If True,ais conjugated and transposed before multiplication. | 
| adjoint_b | If True,bis conjugated and transposed before multiplication. | 
| a_is_sparse | If True,ais treated as a sparse matrix. Notice, this does not supporttf.sparse.SparseTensor, it just makes optimizations that assume most values inaare zero. Seetf.sparse.sparse_dense_matmulfor some support fortf.sparse.SparseTensormultiplication. | 
| b_is_sparse | If True,bis treated as a sparse matrix. Notice, this does not supporttf.sparse.SparseTensor, it just makes optimizations that assume most values inaare zero. Seetf.sparse.sparse_dense_matmulfor some support fortf.sparse.SparseTensormultiplication. | 
| output_type | The output datatype if needed. Defaults to None in which case the output_type is the same as input type. Currently only works when input tensors are type (u)int8 and output_type can be int32. | 
| name | Name for the operation (optional). | 
| Returns | |
|---|---|
| A tf.Tensorof the same type asaandbwhere each inner-most matrix is the product of the corresponding matrices inaandb, e.g. if all transpose or adjoint attributes areFalse:
 | |
| Note | This is matrix product, not element-wise product. | 
| Raises | |
|---|---|
| ValueError | If transpose_aandadjoint_a, ortranspose_bandadjoint_bare both set toTrue. | 
| TypeError | If output_type is specified but the types of a,bandoutput_typeis not (u)int8, (u)int8 and int32. | 
__rmod__
__rmod__(
    x
)
 Returns element-wise remainder of division. When x < 0 xor y < 0 is
true, this follows Python semantics in that the result here is consistent with a flooring divide. E.g. floor(x / y) * y + mod(x, y) = x.
Note: math.floormod supports broadcasting. More about broadcasting here
  
| Args | |
|---|---|
| x | A Tensor. Must be one of the following types:int8,int16,int32,int64,uint8,uint16,uint32,uint64,bfloat16,half,float32,float64. | 
| y | A Tensor. Must have the same type asx. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensor. Has the same type asx. | 
__rmul__
__rmul__(
    x
)
 Dispatches cwise mul for "DenseDense" and "DenseSparse".
__ror__
__ror__(
    x
)
 __rpow__
__rpow__(
    x
)
 Computes the power of one value to another.
Given a tensor x and a tensor y, this operation computes \(x^y\) for corresponding elements in x and y. For example:
x = tf.constant([[2, 2], [3, 3]]) y = tf.constant([[8, 16], [2, 3]]) tf.pow(x, y) # [[256, 65536], [9, 27]]
| Args | |
|---|---|
| x | A Tensorof typefloat16,float32,float64,int32,int64,complex64, orcomplex128. | 
| y | A Tensorof typefloat16,float32,float64,int32,int64,complex64, orcomplex128. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensor. | 
__rsub__
__rsub__(
    x
)
 Returns x - y element-wise.
Note: tf.subtract supports broadcasting. More about broadcasting here
 Both input and output have a range (-inf, inf).
Example usages below.
Subtract operation between an array and a scalar:
x = [1, 2, 3, 4, 5] y = 1 tf.subtract(x, y) <tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4], dtype=int32)> tf.subtract(y, x) <tf.Tensor: shape=(5,), dtype=int32, numpy=array([ 0, -1, -2, -3, -4], dtype=int32)>
Note that binary - operator can be used instead:
x = tf.convert_to_tensor([1, 2, 3, 4, 5]) y = tf.convert_to_tensor(1) x - y <tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4], dtype=int32)>
Subtract operation between an array and a tensor of same shape:
x = [1, 2, 3, 4, 5] y = tf.constant([5, 4, 3, 2, 1]) tf.subtract(y, x) <tf.Tensor: shape=(5,), dtype=int32, numpy=array([ 4, 2, 0, -2, -4], dtype=int32)>
For example,
x = tf.constant([1, 2], dtype=tf.int8) y = [2**8 + 1, 2**8 + 2] tf.subtract(x, y) <tf.Tensor: shape=(2,), dtype=int8, numpy=array([0, 0], dtype=int8)>
When subtracting two input values of different shapes, tf.subtract follows the general broadcasting rules . The two input array shapes are compared element-wise. Starting with the trailing dimensions, the two dimensions either have to be equal or one of them needs to be 1.
For example,
x = np.ones(6).reshape(2, 3, 1)
y = np.ones(6).reshape(2, 1, 3)
tf.subtract(x, y)
<tf.Tensor: shape=(2, 3, 3), dtype=float64, numpy=
array([[[0., 0., 0.],
        [0., 0., 0.],
        [0., 0., 0.]],
       [[0., 0., 0.],
        [0., 0., 0.],
        [0., 0., 0.]]])>
 Example with inputs of different dimensions:
x = np.ones(6).reshape(2, 3, 1)
y = np.ones(6).reshape(1, 6)
tf.subtract(x, y)
<tf.Tensor: shape=(2, 3, 6), dtype=float64, numpy=
array([[[0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.]],
       [[0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.]]])>
  
| Args | |
|---|---|
| x | A Tensor. Must be one of the following types:bfloat16,half,float32,float64,uint8,int8,uint16,int16,int32,int64,complex64,complex128,uint32,uint64. | 
| y | A Tensor. Must have the same type asx. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensor. Has the same type asx. | 
__rtruediv__
__rtruediv__(
    x
)
 Divides x / y elementwise (using Python 3 division operator semantics).
Note: Prefer using the Tensor operator or tf.divide which obey Python division operator semantics.
This function forces Python 3 division operator semantics where all integer arguments are cast to floating types first. This op is generated by normal x / y division in Python 3 and in Python 2.7 with from __future__ import division. If you want integer division that rounds down, use x // y or tf.math.floordiv.
x and y must have the same numeric type. If the inputs are floating point, the output will have the same type. If the inputs are integral, the inputs are cast to float32 for int8 and int16 and float64 for int32 and int64 (matching the behavior of Numpy).
| Args | |
|---|---|
| x | Tensornumerator of numeric type. | 
| y | Tensordenominator of numeric type. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| x / yevaluated in floating point. | 
| Raises | |
|---|---|
| TypeError | If xandyhave different dtypes. | 
__rxor__
__rxor__(
    x
)
 __sub__
__sub__(
    y
)
 Returns x - y element-wise.
Note: tf.subtract supports broadcasting. More about broadcasting here
 Both input and output have a range (-inf, inf).
Example usages below.
Subtract operation between an array and a scalar:
x = [1, 2, 3, 4, 5] y = 1 tf.subtract(x, y) <tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4], dtype=int32)> tf.subtract(y, x) <tf.Tensor: shape=(5,), dtype=int32, numpy=array([ 0, -1, -2, -3, -4], dtype=int32)>
Note that binary - operator can be used instead:
x = tf.convert_to_tensor([1, 2, 3, 4, 5]) y = tf.convert_to_tensor(1) x - y <tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4], dtype=int32)>
Subtract operation between an array and a tensor of same shape:
x = [1, 2, 3, 4, 5] y = tf.constant([5, 4, 3, 2, 1]) tf.subtract(y, x) <tf.Tensor: shape=(5,), dtype=int32, numpy=array([ 4, 2, 0, -2, -4], dtype=int32)>
For example,
x = tf.constant([1, 2], dtype=tf.int8) y = [2**8 + 1, 2**8 + 2] tf.subtract(x, y) <tf.Tensor: shape=(2,), dtype=int8, numpy=array([0, 0], dtype=int8)>
When subtracting two input values of different shapes, tf.subtract follows the general broadcasting rules . The two input array shapes are compared element-wise. Starting with the trailing dimensions, the two dimensions either have to be equal or one of them needs to be 1.
For example,
x = np.ones(6).reshape(2, 3, 1)
y = np.ones(6).reshape(2, 1, 3)
tf.subtract(x, y)
<tf.Tensor: shape=(2, 3, 3), dtype=float64, numpy=
array([[[0., 0., 0.],
        [0., 0., 0.],
        [0., 0., 0.]],
       [[0., 0., 0.],
        [0., 0., 0.],
        [0., 0., 0.]]])>
 Example with inputs of different dimensions:
x = np.ones(6).reshape(2, 3, 1)
y = np.ones(6).reshape(1, 6)
tf.subtract(x, y)
<tf.Tensor: shape=(2, 3, 6), dtype=float64, numpy=
array([[[0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.]],
       [[0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0.]]])>
  
| Args | |
|---|---|
| x | A Tensor. Must be one of the following types:bfloat16,half,float32,float64,uint8,int8,uint16,int16,int32,int64,complex64,complex128,uint32,uint64. | 
| y | A Tensor. Must have the same type asx. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensor. Has the same type asx. | 
__truediv__
__truediv__(
    y
)
 Divides x / y elementwise (using Python 3 division operator semantics).
Note: Prefer using the Tensor operator or tf.divide which obey Python division operator semantics.
This function forces Python 3 division operator semantics where all integer arguments are cast to floating types first. This op is generated by normal x / y division in Python 3 and in Python 2.7 with from __future__ import division. If you want integer division that rounds down, use x // y or tf.math.floordiv.
x and y must have the same numeric type. If the inputs are floating point, the output will have the same type. If the inputs are integral, the inputs are cast to float32 for int8 and int16 and float64 for int32 and int64 (matching the behavior of Numpy).
| Args | |
|---|---|
| x | Tensornumerator of numeric type. | 
| y | Tensordenominator of numeric type. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| x / yevaluated in floating point. | 
| Raises | |
|---|---|
| TypeError | If xandyhave different dtypes. | 
__xor__
__xor__(
    y
)
  
| Class Variables | |
|---|---|
| OVERLOADABLE_OPERATORS | {
 '__abs__',
 '__add__',
 '__and__',
 '__div__',
 '__eq__',
 '__floordiv__',
 '__ge__',
 '__getitem__',
 '__gt__',
 '__invert__',
 '__le__',
 '__lt__',
 '__matmul__',
 '__mod__',
 '__mul__',
 '__ne__',
 '__neg__',
 '__or__',
 '__pow__',
 '__radd__',
 '__rand__',
 '__rdiv__',
 '__rfloordiv__',
 '__rmatmul__',
 '__rmod__',
 '__rmul__',
 '__ror__',
 '__rpow__',
 '__rsub__',
 '__rtruediv__',
 '__rxor__',
 '__sub__',
 '__truediv__',
 '__xor__'
}
 | 
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/Tensor