| View source on GitHub | 
Describes a tf.Tensor.
Inherits From: TypeSpec, TraceType
tf.TensorSpec(
    shape,
    dtype=tf.dtypes.float32,
    name=None
)
  Metadata for describing the tf.Tensor objects accepted or returned by some TensorFlow APIs.
| Args | |
|---|---|
| shape | Value convertible to tf.TensorShape. The shape of the tensor. | 
| dtype | Value convertible to tf.DType. The type of the tensor values. | 
| name | Optional name for the Tensor. | 
| Raises | |
|---|---|
| TypeError | If shape is not convertible to a tf.TensorShape, or dtype is not convertible to atf.DType. | 
| Attributes | |
|---|---|
| dtype | Returns the dtypeof elements in the tensor. | 
| name | Returns the (optionally provided) name of the described tensor. | 
| shape | Returns the TensorShapethat represents the shape of the tensor. | 
| value_type | The Python type for values that are compatible with this TypeSpec. | 
from_spec
@classmethod
from_spec(
    spec, name=None
)
 Returns a TensorSpec with the same shape and dtype as spec.
spec = tf.TensorSpec(shape=[8, 3], dtype=tf.int32, name="OriginalName") tf.TensorSpec.from_spec(spec, "NewName") TensorSpec(shape=(8, 3), dtype=tf.int32, name='NewName')
| Args | |
|---|---|
| spec | The TypeSpecused to create the newTensorSpec. | 
| name | The name for the new TensorSpec. Defaults tospec.name. | 
from_tensor
@classmethod
from_tensor(
    tensor, name=None
)
 Returns a TensorSpec that describes tensor.
tf.TensorSpec.from_tensor(tf.constant([1, 2, 3])) TensorSpec(shape=(3,), dtype=tf.int32, name=None)
| Args | |
|---|---|
| tensor | The tf.Tensorthat should be described. | 
| name | A name for the TensorSpec. Defaults totensor.op.name. | 
| Returns | |
|---|---|
| A TensorSpecthat describestensor. | 
is_compatible_with
is_compatible_with(
    spec_or_tensor
)
 Returns True if spec_or_tensor is compatible with this TensorSpec.
Two tensors are considered compatible if they have the same dtype and their shapes are compatible (see tf.TensorShape.is_compatible_with).
| Args | |
|---|---|
| spec_or_tensor | A tf.TensorSpec or a tf.Tensor | 
| Returns | |
|---|---|
| True if spec_or_tensor is compatible with self. | 
is_subtype_of
is_subtype_of(
    other: tf.types.experimental.TraceType
) -> bool
 Returns True if self is a subtype of other.
Implements the tf.types.experimental.func.TraceType interface.
If not overridden by a subclass, the default behavior is to assume the TypeSpec is covariant upon attributes that implement TraceType and invariant upon rest of the attributes as well as the structure and type of the TypeSpec.
| Args | |
|---|---|
| other | A TraceType object. | 
most_specific_common_supertype
most_specific_common_supertype(
    others: Sequence[tf.types.experimental.TraceType]
) -> Optional['TypeSpec']
 Returns the most specific supertype TypeSpec of self and others.
Implements the tf.types.experimental.func.TraceType interface.
If not overridden by a subclass, the default behavior is to assume the TypeSpec is covariant upon attributes that implement TraceType and invariant upon rest of the attributes as well as the structure and type of the TypeSpec.
| Args | |
|---|---|
| others | A sequence of TraceTypes. | 
most_specific_compatible_type
most_specific_compatible_type(
    other: 'TypeSpec'
) -> 'TypeSpec'
 Returns the most specific TypeSpec compatible with self and other. (deprecated)
Deprecated. Please use most_specific_common_supertype instead. Do not override this function.
| Args | |
|---|---|
| other | A TypeSpec. | 
| Raises | |
|---|---|
| ValueError | If there is no TypeSpec that is compatible with both selfandother. | 
__eq__
__eq__(
    other
)
 Return self==value.
__ne__
__ne__(
    other
)
 Return self!=value.
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/TensorSpec