tf.type_spec_from_value
        Returns a tf.TypeSpec that represents the given value.
  
tf.type_spec_from_value(
    value
) -> tf.TypeSpec
  Examples:
 
tf.type_spec_from_value(tf.constant([1, 2, 3]))
TensorSpec(shape=(3,), dtype=tf.int32, name=None)
tf.type_spec_from_value(np.array([4.0, 5.0], np.float64))
TensorSpec(shape=(2,), dtype=tf.float64, name=None)
tf.type_spec_from_value(tf.ragged.constant([[1, 2], [3, 4, 5]]))
RaggedTensorSpec(TensorShape([2, None]), tf.int32, 1, tf.int64)
 
example_input = tf.ragged.constant([[1, 2], [3]])
@tf.function(input_signature=[tf.type_spec_from_value(example_input)])
def f(x):
  return tf.reduce_sum(x, axis=1)
  
  
 
 | Returns | 
|---|
  | A TypeSpecthat is compatible withvalue. | 
 
  
 
 | Raises | 
|---|
 
 | TypeError | If a TypeSpec cannot be built for value, because its type is not supported. |