Note: Functions takingTensor
arguments can also take anything accepted bytf.convert_to_tensor
.
TensorFlow provides Ops to decode and encode JPEG and PNG formats. Encoded images are represented by scalar string Tensors, decoded images by 3-D uint8 tensors of shape [height, width, channels]
. (PNG also supports uint16.)
The encode and decode Ops apply to one image at a time. Their input and output are all of variable size. If you need fixed size images, pass the output of the decode Ops to one of the cropping and resizing Ops.
Note: The PNG encode and decode Ops support RGBA, but the conversions Ops presently only support RGB, HSV, and GrayScale. Presently, the alpha channel has to be stripped from the image and re-attached using slicing ops.
tf.image.decode_bmp
tf.image.decode_gif
tf.image.decode_jpeg
tf.image.encode_jpeg
tf.image.decode_png
tf.image.encode_png
tf.image.decode_image
The resizing Ops accept input images as tensors of several types. They always output resized images as float32 tensors.
The convenience function tf.image.resize_images
supports both 4-D and 3-D tensors as input and output. 4-D tensors are for batches of images, 3-D tensors for individual images.
Other resizing Ops only support 4-D batches of images as input: tf.image.resize_area
, tf.image.resize_bicubic
, tf.image.resize_bilinear
, tf.image.resize_nearest_neighbor
.
Example:
# Decode a JPG image and resize it to 299 by 299 using default method. image = tf.image.decode_jpeg(...) resized_image = tf.image.resize_images(image, [299, 299])
tf.image.resize_images
tf.image.resize_area
tf.image.resize_bicubic
tf.image.resize_bilinear
tf.image.resize_nearest_neighbor
tf.image.resize_image_with_crop_or_pad
tf.image.central_crop
tf.image.pad_to_bounding_box
tf.image.crop_to_bounding_box
tf.image.extract_glimpse
tf.image.crop_and_resize
tf.image.flip_up_down
tf.image.random_flip_up_down
tf.image.flip_left_right
tf.image.random_flip_left_right
tf.image.transpose_image
tf.image.rot90
Image ops work either on individual images or on batches of images, depending on the shape of their input Tensor.
If 3-D, the shape is [height, width, channels]
, and the Tensor represents one image. If 4-D, the shape is [batch_size, height, width, channels]
, and the Tensor represents batch_size
images.
Currently, channels
can usefully be 1, 2, 3, or 4. Single-channel images are grayscale, images with 3 channels are encoded as either RGB or HSV. Images with 2 or 4 channels include an alpha channel, which has to be stripped from the image before passing the image to most image processing functions (and can be re-attached later).
Internally, images are either stored in as one float32
per channel per pixel (implicitly, values are assumed to lie in [0,1)
) or one uint8
per channel per pixel (values are assumed to lie in [0,255]
).
TensorFlow can convert between images in RGB or HSV. The conversion functions work only on float images, so you need to convert images in other formats using tf.image.convert_image_dtype
.
Example:
# Decode an image and convert it to HSV. rgb_image = tf.image.decode_png(..., channels=3) rgb_image_float = tf.image.convert_image_dtype(rgb_image, tf.float32) hsv_image = tf.image.rgb_to_hsv(rgb_image)
tf.image.rgb_to_grayscale
tf.image.grayscale_to_rgb
tf.image.hsv_to_rgb
tf.image.rgb_to_hsv
tf.image.convert_image_dtype
TensorFlow provides functions to adjust images in various ways: brightness, contrast, hue, and saturation. Each adjustment can be done with predefined parameters or with random parameters picked from predefined intervals. Random adjustments are often useful to expand a training set and reduce overfitting.
If several adjustments are chained it is advisable to minimize the number of redundant conversions by first converting the images to the most natural data type and representation (RGB or HSV).
tf.image.adjust_brightness
tf.image.random_brightness
tf.image.adjust_contrast
tf.image.random_contrast
tf.image.adjust_hue
tf.image.random_hue
tf.image.adjust_gamma
tf.image.adjust_saturation
tf.image.random_saturation
tf.image.per_image_standardization
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_guides/python/image