tf.clip_by_norm(
t,
clip_norm,
axes=None,
name=None
)
Defined in tensorflow/python/ops/clip_ops.py.
See the guide: Training > Gradient Clipping
Clips tensor values to a maximum L2-norm.
Given a tensor t, and a maximum clip value clip_norm, this operation normalizes t so that its L2-norm is less than or equal to clip_norm, along the dimensions given in axes. Specifically, in the default case where all dimensions are used for calculation, if the L2-norm of t is already less than or equal to clip_norm, then t is not modified. If the L2-norm is greater than clip_norm, then this operation returns a tensor of the same type and shape as t with its values set to:
t * clip_norm / l2norm(t)
In this case, the L2-norm of the output tensor is clip_norm.
As another example, if t is a matrix and axes == [1], then each row of the output will have L2-norm equal to clip_norm. If axes == [0] instead, each column of the output will be clipped.
This operation is typically used to clip gradients before applying them with an optimizer.
t: A Tensor.clip_norm: A 0-D (scalar) Tensor > 0. A maximum clipping value.axes: A 1-D (vector) Tensor of type int32 containing the dimensions to use for computing the L2-norm. If None (the default), uses all dimensions.name: A name for the operation (optional).A clipped Tensor.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/clip_by_norm