W3cubDocs

/TensorFlow Python

tf.contrib.data.ignore_errors

tf.contrib.data.ignore_errors()

Defined in tensorflow/contrib/data/python/ops/error_ops.py.

See the guide: Dataset Input Pipeline > Transformations on existing datasets

Creates a Dataset from another Dataset and silently ignores any errors.

Use this transformation to produce a dataset that contains the same elements as the input, but silently drops any elements that caused an error. For example:

dataset = tf.data.Dataset.from_tensor_slices([1., 2., 0., 4.])

# Computing `tf.check_numerics(1. / 0.)` will raise an InvalidArgumentError.
dataset = dataset.map(lambda x: tf.check_numerics(1. / x, "error"))

# Using `ignore_errors()` will drop the element that causes an error.
dataset =
    dataset.apply(tf.contrib.data.ignore_errors())  # ==> { 1., 0.5, 0.2 }

Returns:

A Dataset transformation function, which can be passed to tf.data.Dataset.apply.

© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/data/ignore_errors