tf.contrib.data.padded_batch_and_drop_remainder( batch_size, padded_shapes, padding_values=None )
Defined in tensorflow/contrib/data/python/ops/batching.py
.
See the guide: Dataset Input Pipeline > Transformations on existing datasets
A batching and padding transformation that omits the final small batch.
Like tf.data.Dataset.padded_batch
, this transformation combines consecutive elements of this dataset into batches. However, if the batch size does not evenly divide the input dataset size, this transformation will drop the final smaller element.
See <a href="../../../tf/contrib/data/batch_and_drop_remainder"><code>tf.contrib.data.batch_and_drop_remainder</code></a>
for more details.
batch_size
: A tf.int64
scalar tf.Tensor
, representing the number of consecutive elements of this dataset to combine in a single batch.padded_shapes
: A nested structure of tf.TensorShape
or tf.int64
vector tensor-like objects. See tf.data.Dataset.padded_batch
for details.padding_values
: (Optional.) A nested structure of scalar-shaped tf.Tensor
. See tf.data.Dataset.padded_batch
for details.A Dataset
transformation function, which can be passed to tf.data.Dataset.apply
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/data/padded_batch_and_drop_remainder