tf.contrib.data.read_batch_features(
file_pattern,
batch_size,
features,
reader=tf.data.TFRecordDataset,
reader_args=None,
randomize_input=True,
num_epochs=None,
capacity=10000
)
Defined in tensorflow/contrib/data/python/ops/readers.py.
See the guide: Dataset Input Pipeline > Extra functions from tf.contrib.data
Reads batches of Examples. (deprecated)
THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.contrib.data.make_batched_features_dataset
Example:
serialized_examples = [
features {
feature { key: "age" value { int64_list { value: [ 0 ] } } }
feature { key: "gender" value { bytes_list { value: [ "f" ] } } }
feature { key: "kws" value { bytes_list { value: [ "code", "art" ] } } }
},
features {
feature { key: "age" value { int64_list { value: [] } } }
feature { key: "gender" value { bytes_list { value: [ "f" ] } } }
feature { key: "kws" value { bytes_list { value: [ "sports" ] } } }
}
]
We can use arguments:
features: {
"age": FixedLenFeature([], dtype=tf.int64, default_value=-1),
"gender": FixedLenFeature([], dtype=tf.string),
"kws": VarLenFeature(dtype=tf.string),
}
And the expected output is:
{
"age": [[0], [-1]],
"gender": [["f"], ["f"]],
"kws": SparseTensor(
indices=[[0, 0], [0, 1], [1, 0]],
values=["code", "art", "sports"]
dense_shape=[2, 2]),
}
file_pattern: List of files or patterns of file paths containing Example records. See tf.gfile.Glob for pattern rules.batch_size: An int representing the number of consecutive elements of this dataset to combine in a single batch.features: A dict mapping feature keys to FixedLenFeature or VarLenFeature values. See tf.parse_example.reader: A function or class that can be called with a filenames tensor and (optional) reader_args and returns a Dataset of Example tensors. Defaults to tf.data.TFRecordDataset.reader_args: Additional arguments to pass to the reader class.randomize_input: Whether the input should be randomized.num_epochs: Integer specifying the number of times to read through the dataset. If None, cycles through the dataset forever.capacity: Buffer size of the ShuffleDataset. A large capacity ensures better shuffling but would increase memory usage and startup time.A dict from keys in features to Tensor or SparseTensor objects.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/data/read_batch_features