tf.contrib.data.read_batch_features( file_pattern, batch_size, features, reader=tf.data.TFRecordDataset, reader_args=None, randomize_input=True, num_epochs=None, capacity=10000 )
Defined in tensorflow/contrib/data/python/ops/readers.py
.
See the guide: Dataset Input Pipeline > Extra functions from tf.contrib.data
Reads batches of Examples. (deprecated)
THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.contrib.data.make_batched_features_dataset
Example:
serialized_examples = [ features { feature { key: "age" value { int64_list { value: [ 0 ] } } } feature { key: "gender" value { bytes_list { value: [ "f" ] } } } feature { key: "kws" value { bytes_list { value: [ "code", "art" ] } } } }, features { feature { key: "age" value { int64_list { value: [] } } } feature { key: "gender" value { bytes_list { value: [ "f" ] } } } feature { key: "kws" value { bytes_list { value: [ "sports" ] } } } } ]
We can use arguments:
features: { "age": FixedLenFeature([], dtype=tf.int64, default_value=-1), "gender": FixedLenFeature([], dtype=tf.string), "kws": VarLenFeature(dtype=tf.string), }
And the expected output is:
{ "age": [[0], [-1]], "gender": [["f"], ["f"]], "kws": SparseTensor( indices=[[0, 0], [0, 1], [1, 0]], values=["code", "art", "sports"] dense_shape=[2, 2]), }
file_pattern
: List of files or patterns of file paths containing Example
records. See tf.gfile.Glob
for pattern rules.batch_size
: An int representing the number of consecutive elements of this dataset to combine in a single batch.features
: A dict
mapping feature keys to FixedLenFeature
or VarLenFeature
values. See tf.parse_example
.reader
: A function or class that can be called with a filenames
tensor and (optional) reader_args
and returns a Dataset
of Example
tensors. Defaults to tf.data.TFRecordDataset
.reader_args
: Additional arguments to pass to the reader class.randomize_input
: Whether the input should be randomized.num_epochs
: Integer specifying the number of times to read through the dataset. If None, cycles through the dataset forever.capacity
: Buffer size of the ShuffleDataset. A large capacity ensures better shuffling but would increase memory usage and startup time.A dict from keys in features to Tensor
or SparseTensor
objects.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/data/read_batch_features