tf.contrib.data.shuffle_and_repeat( buffer_size, count=None, seed=None )
Defined in tensorflow/contrib/data/python/ops/shuffle_ops.py
.
See the guide: Dataset Input Pipeline > Transformations on existing datasets
Shuffles and repeats a Dataset returning a new permutation for each epoch.
dataset.apply(tf.contrib.data.shuffle_and_repeat(buffer_size, count))
is equivalent to
dataset.shuffle(buffer_size, reshuffle_each_iteration=True).repeat(count)
The difference is that the latter dataset is not serializable. So, if you need to checkpoint an input pipeline with reshuffling you must use this implementation.
buffer_size
: A tf.int64
scalar tf.Tensor
, representing the maximum number elements that will be buffered when prefetching.count
: (Optional.) A tf.int64
scalar tf.Tensor
, representing the number of times the dataset should be repeated. The default behavior (if count
is None
or -1
) is for the dataset be repeated indefinitely.seed
: (Optional.) A tf.int64
scalar tf.Tensor
, representing the random seed that will be used to create the distribution. See tf.set_random_seed
for behavior.A Dataset
transformation function, which can be passed to tf.data.Dataset.apply
.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/data/shuffle_and_repeat