tf.contrib.data.sliding_window_batch( window_size, stride=1 )
Defined in tensorflow/contrib/data/python/ops/sliding.py
.
A sliding window with size of window_size
and step of stride
.
This transformation passes a sliding window over this dataset. The window size is window_size
and step size is stride
. If the left elements cannot fill up the sliding window, this transformation will drop the final smaller element. For example:
# NOTE: The following examples use `{ ... }` to represent the # contents of a dataset. a = { [1], [2], [3], [4], [5], [6] } a.apply(tf.contrib.data.sliding_window_batch(window_size=3, stride=2)) == { [[1], [2], [3]], [[3], [4], [5]], }
window_size
: A tf.int64
scalar tf.Tensor
, representing the number of elements in the sliding window.stride
: (Optional.) A tf.int64
scalar tf.Tensor
, representing the steps moving the sliding window forward for one iteration. The default is 1
. It must be in [1, window_size)
.A Dataset
transformation function, which can be passed to tf.data.Dataset.apply
.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/data/sliding_window_batch