AbsoluteValue
Inherits From: Bijector
Defined in tensorflow/contrib/distributions/python/ops/bijectors/absolute_value.py
.
Computes Y = g(X) = Abs(X)
, element-wise.
This non-injective bijector allows for transformations of scalar distributions with the absolute value function, which maps (-inf, inf)
to [0, inf)
.
y in (0, inf)
, AbsoluteValue.inverse(y)
returns the set inverse {x in (-inf, inf) : |x| = y}
as a tuple, -y, y
.AbsoluteValue.inverse(0)
returns 0, 0
, which is not the set inverse (the set inverse is the singleton {0}
), but "works" in conjunction with TransformedDistribution
to produce a left semi-continuous pdf.y < 0
, AbsoluteValue.inverse(y)
happily returns the wrong thing, -y, y
. This is done for efficiency. If validate_args == True
, y < 0
will raise an exception.tfd = tf.contrib.distributions abs = tfd.bijectors.AbsoluteValue() abs.forward([-1., 0., 1.]) ==> [1., 0., 1.] abs.inverse(1.) ==> [-1., 1.] # The |dX/dY| is constant, == 1. So Log|dX/dY| == 0. abs.inverse_log_det_jacobian(1.) ==> [0., 0.] # Special case handling of 0. abs.inverse(0.) ==> [0., 0.] abs.inverse_log_det_jacobian(0.) ==> [0., 0.]
dtype
dtype of Tensor
s transformable by this distribution.
event_ndims
Returns then number of event dimensions this bijector operates on.
graph_parents
Returns this Bijector
's graph_parents as a Python list.
is_constant_jacobian
Returns true iff the Jacobian is not a function of x.
Note: Jacobian is either constant for both forward and inverse or neither.
is_constant_jacobian
: Python bool
.name
Returns the string name of this Bijector
.
validate_args
Returns True if Tensor arguments will be validated.
__init__
__init__( event_ndims=0, validate_args=False, name='absolute_value' )
Instantiates the AbsoluteValue
bijector.
event_ndims
: Python scalar indicating the number of dimensions associated with a particular draw from the distribution. Currently only zero is supported.validate_args
: Python bool
indicating whether arguments should be checked for correctness, in particular whether inputs to inverse
and inverse_log_det_jacobian
are non-negative.name
: Python str
name given to ops managed by this object.ValueError
: If event_ndims
is not zero.forward
forward( x, name='forward' )
Returns the forward Bijector
evaluation, i.e., X = g(Y).
x
: Tensor
. The input to the "forward" evaluation.name
: The name to give this op.Tensor
.
TypeError
: if self.dtype
is specified and x.dtype
is not self.dtype
.NotImplementedError
: if _forward
is not implemented.forward_event_shape
forward_event_shape(input_shape)
Shape of a single sample from a single batch as a TensorShape
.
Same meaning as forward_event_shape_tensor
. May be only partially defined.
input_shape
: TensorShape
indicating event-portion shape passed into forward
function.forward_event_shape_tensor
: TensorShape
indicating event-portion shape after applying forward
. Possibly unknown.forward_event_shape_tensor
forward_event_shape_tensor( input_shape, name='forward_event_shape_tensor' )
Shape of a single sample from a single batch as an int32
1D Tensor
.
input_shape
: Tensor
, int32
vector indicating event-portion shape passed into forward
function.name
: name to give to the opforward_event_shape_tensor
: Tensor
, int32
vector indicating event-portion shape after applying forward
.forward_log_det_jacobian
forward_log_det_jacobian( x, name='forward_log_det_jacobian' )
Returns both the forward_log_det_jacobian.
x
: Tensor
. The input to the "forward" Jacobian evaluation.name
: The name to give this op.Tensor
, if this bijector is injective. If not injective this is not implemented.
TypeError
: if self.dtype
is specified and y.dtype
is not self.dtype
.NotImplementedError
: if neither _forward_log_det_jacobian
nor {_inverse
, _inverse_log_det_jacobian
} are implemented, or this is a non-injective bijector.inverse
inverse( y, name='inverse' )
Returns the inverse Bijector
evaluation, i.e., X = g^{-1}(Y).
y
: Tensor
. The input to the "inverse" evaluation.name
: The name to give this op.Tensor
, if this bijector is injective. If not injective, returns the k-tuple containing the unique k
points (x1, ..., xk)
such that g(xi) = y
.
TypeError
: if self.dtype
is specified and y.dtype
is not self.dtype
.NotImplementedError
: if _inverse
is not implemented.inverse_event_shape
inverse_event_shape(output_shape)
Shape of a single sample from a single batch as a TensorShape
.
Same meaning as inverse_event_shape_tensor
. May be only partially defined.
output_shape
: TensorShape
indicating event-portion shape passed into inverse
function.inverse_event_shape_tensor
: TensorShape
indicating event-portion shape after applying inverse
. Possibly unknown.inverse_event_shape_tensor
inverse_event_shape_tensor( output_shape, name='inverse_event_shape_tensor' )
Shape of a single sample from a single batch as an int32
1D Tensor
.
output_shape
: Tensor
, int32
vector indicating event-portion shape passed into inverse
function.name
: name to give to the opinverse_event_shape_tensor
: Tensor
, int32
vector indicating event-portion shape after applying inverse
.inverse_log_det_jacobian
inverse_log_det_jacobian( y, name='inverse_log_det_jacobian' )
Returns the (log o det o Jacobian o inverse)(y).
Mathematically, returns: log(det(dX/dY))(Y)
. (Recall that: X=g^{-1}(Y)
.)
Note that forward_log_det_jacobian
is the negative of this function, evaluated at g^{-1}(y)
.
y
: Tensor
. The input to the "inverse" Jacobian evaluation.name
: The name to give this op.Tensor
, if this bijector is injective. If not injective, returns the tuple of local log det Jacobians, log(det(Dg_i^{-1}(y)))
, where g_i
is the restriction of g
to the ith
partition Di
.
TypeError
: if self.dtype
is specified and y.dtype
is not self.dtype
.NotImplementedError
: if _inverse_log_det_jacobian
is not implemented.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/distributions/bijectors/AbsoluteValue