Affine
Inherits From: Bijector
Defined in tensorflow/contrib/distributions/python/ops/bijectors/affine.py
.
See the guide: Random variable transformations (contrib) > Bijectors
Compute Y = g(X; shift, scale) = scale @ X + shift
.
Here scale = c * I + diag(D1) + tril(L) + V @ diag(D2) @ V.T
.
In TF parlance, the scale
term is logically equivalent to:
scale = ( scale_identity_multiplier * tf.diag(tf.ones(d)) + tf.diag(scale_diag) + scale_tril + scale_perturb_factor @ diag(scale_perturb_diag) @ tf.transpose([scale_perturb_factor]) )
The scale
term is applied without necessarily materializing constituent matrices, i.e., the matmul is matrix-free when possible.
# Y = X b = Affine() # Y = X + shift b = Affine(shift=[1., 2, 3]) # Y = 2 * I @ X.T + shift b = Affine(shift=[1., 2, 3], scale_identity_multiplier=2.) # Y = tf.diag(d1) @ X.T + shift b = Affine(shift=[1., 2, 3], scale_diag=[-1., 2, 1]) # Implicitly 3x3. # Y = (I + v * v.T) @ X.T + shift b = Affine(shift=[1., 2, 3], scale_perturb_factor=[[1., 0], [0, 1], [1, 1]]) # Y = (diag(d1) + v * diag(d2) * v.T) @ X.T + shift b = Affine(shift=[1., 2, 3], scale_diag=[1., 3, 3], # Implicitly 3x3. scale_perturb_diag=[2., 1], # Implicitly 2x2. scale_perturb_factor=[[1., 0], [0, 1], [1, 1]])
dtype
dtype of Tensor
s transformable by this distribution.
event_ndims
Returns then number of event dimensions this bijector operates on.
graph_parents
Returns this Bijector
's graph_parents as a Python list.
is_constant_jacobian
Returns true iff the Jacobian is not a function of x.
Note: Jacobian is either constant for both forward and inverse or neither.
is_constant_jacobian
: Python bool
.name
Returns the string name of this Bijector
.
scale
The scale
LinearOperator
in Y = scale @ X + shift
.
shift
The shift
Tensor
in Y = scale @ X + shift
.
validate_args
Returns True if Tensor arguments will be validated.
__init__
__init__( shift=None, scale_identity_multiplier=None, scale_diag=None, scale_tril=None, scale_perturb_factor=None, scale_perturb_diag=None, validate_args=False, name='affine' )
Instantiates the Affine
bijector.
This Bijector
is initialized with shift
Tensor
and scale
arguments, giving the forward operation:
Y = g(X) = scale @ X + shift
where the scale
term is logically equivalent to:
scale = ( scale_identity_multiplier * tf.diag(tf.ones(d)) + tf.diag(scale_diag) + scale_tril + scale_perturb_factor @ diag(scale_perturb_diag) @ tf.transpose([scale_perturb_factor]) )
If none of scale_identity_multiplier
, scale_diag
, or scale_tril
are specified then scale += IdentityMatrix
. Otherwise specifying a scale
argument has the semantics of scale += Expand(arg)
, i.e., scale_diag != None
means scale += tf.diag(scale_diag)
.
shift
: Floating-point Tensor
. If this is set to None
, no shift is applied.scale_identity_multiplier
: floating point rank 0 Tensor
representing a scaling done to the identity matrix. When scale_identity_multiplier = scale_diag = scale_tril = None
then scale += IdentityMatrix
. Otherwise no scaled-identity-matrix is added to scale
.scale_diag
: Floating-point Tensor
representing the diagonal matrix. scale_diag
has shape [N1, N2, ... k], which represents a k x k diagonal matrix. When None
no diagonal term is added to scale
.scale_tril
: Floating-point Tensor
representing the diagonal matrix. scale_diag
has shape [N1, N2, ... k, k], which represents a k x k lower triangular matrix. When None
no scale_tril
term is added to scale
. The upper triangular elements above the diagonal are ignored.scale_perturb_factor
: Floating-point Tensor
representing factor matrix with last two dimensions of shape (k, r)
. When None
, no rank-r update is added to scale
.scale_perturb_diag
: Floating-point Tensor
representing the diagonal matrix. scale_perturb_diag
has shape [N1, N2, ... r], which represents an r x r
diagonal matrix. When None
low rank updates will take the form scale_perturb_factor * scale_perturb_factor.T
.validate_args
: Python bool
indicating whether arguments should be checked for correctness.name
: Python str
name given to ops managed by this object.ValueError
: if perturb_diag
is specified but not perturb_factor
.TypeError
: if shift
has different dtype
from scale
arguments.forward
forward( x, name='forward' )
Returns the forward Bijector
evaluation, i.e., X = g(Y).
x
: Tensor
. The input to the "forward" evaluation.name
: The name to give this op.Tensor
.
TypeError
: if self.dtype
is specified and x.dtype
is not self.dtype
.NotImplementedError
: if _forward
is not implemented.forward_event_shape
forward_event_shape(input_shape)
Shape of a single sample from a single batch as a TensorShape
.
Same meaning as forward_event_shape_tensor
. May be only partially defined.
input_shape
: TensorShape
indicating event-portion shape passed into forward
function.forward_event_shape_tensor
: TensorShape
indicating event-portion shape after applying forward
. Possibly unknown.forward_event_shape_tensor
forward_event_shape_tensor( input_shape, name='forward_event_shape_tensor' )
Shape of a single sample from a single batch as an int32
1D Tensor
.
input_shape
: Tensor
, int32
vector indicating event-portion shape passed into forward
function.name
: name to give to the opforward_event_shape_tensor
: Tensor
, int32
vector indicating event-portion shape after applying forward
.forward_log_det_jacobian
forward_log_det_jacobian( x, name='forward_log_det_jacobian' )
Returns both the forward_log_det_jacobian.
x
: Tensor
. The input to the "forward" Jacobian evaluation.name
: The name to give this op.Tensor
, if this bijector is injective. If not injective this is not implemented.
TypeError
: if self.dtype
is specified and y.dtype
is not self.dtype
.NotImplementedError
: if neither _forward_log_det_jacobian
nor {_inverse
, _inverse_log_det_jacobian
} are implemented, or this is a non-injective bijector.inverse
inverse( y, name='inverse' )
Returns the inverse Bijector
evaluation, i.e., X = g^{-1}(Y).
y
: Tensor
. The input to the "inverse" evaluation.name
: The name to give this op.Tensor
, if this bijector is injective. If not injective, returns the k-tuple containing the unique k
points (x1, ..., xk)
such that g(xi) = y
.
TypeError
: if self.dtype
is specified and y.dtype
is not self.dtype
.NotImplementedError
: if _inverse
is not implemented.inverse_event_shape
inverse_event_shape(output_shape)
Shape of a single sample from a single batch as a TensorShape
.
Same meaning as inverse_event_shape_tensor
. May be only partially defined.
output_shape
: TensorShape
indicating event-portion shape passed into inverse
function.inverse_event_shape_tensor
: TensorShape
indicating event-portion shape after applying inverse
. Possibly unknown.inverse_event_shape_tensor
inverse_event_shape_tensor( output_shape, name='inverse_event_shape_tensor' )
Shape of a single sample from a single batch as an int32
1D Tensor
.
output_shape
: Tensor
, int32
vector indicating event-portion shape passed into inverse
function.name
: name to give to the opinverse_event_shape_tensor
: Tensor
, int32
vector indicating event-portion shape after applying inverse
.inverse_log_det_jacobian
inverse_log_det_jacobian( y, name='inverse_log_det_jacobian' )
Returns the (log o det o Jacobian o inverse)(y).
Mathematically, returns: log(det(dX/dY))(Y)
. (Recall that: X=g^{-1}(Y)
.)
Note that forward_log_det_jacobian
is the negative of this function, evaluated at g^{-1}(y)
.
y
: Tensor
. The input to the "inverse" Jacobian evaluation.name
: The name to give this op.Tensor
, if this bijector is injective. If not injective, returns the tuple of local log det Jacobians, log(det(Dg_i^{-1}(y)))
, where g_i
is the restriction of g
to the ith
partition Di
.
TypeError
: if self.dtype
is specified and y.dtype
is not self.dtype
.NotImplementedError
: if _inverse_log_det_jacobian
is not implemented.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/distributions/bijectors/Affine