tf.contrib.distributions.bijectors.masked_dense(
inputs,
units,
num_blocks=None,
exclusive=False,
kernel_initializer=None,
reuse=None,
name=None,
*args,
**kwargs
)
Defined in tensorflow/contrib/distributions/python/ops/bijectors/masked_autoregressive.py.
A autoregressively masked dense layer. Analogous to tf.layers.dense.
See [Germain et al. (2015)][1] for detailed explanation.
inputs: Tensor input.units: Python int scalar representing the dimensionality of the output space.num_blocks: Python int scalar representing the number of blocks for the MADE masks.exclusive: Python bool scalar representing whether to zero the diagonal of the mask, used for the first layer of a MADE.kernel_initializer: Initializer function for the weight matrix. If None (default), weights are initialized using the tf.glorot_random_initializer.reuse: Python bool scalar representing whether to reuse the weights of a previous layer by the same name.name: Python str used to describe ops managed by this function.*args: tf.layers.dense arguments.**kwargs: tf.layers.dense keyword arguments.Output tensor.
NotImplementedError: if rightmost dimension of inputs is unknown prior to graph execution.[1]: Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked Autoencoder for Distribution Estimation. In International Conference on Machine Learning, 2015. https://arxiv.org/abs/1502.03509
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/distributions/bijectors/masked_dense