tf.contrib.distributions.bijectors.masked_dense( inputs, units, num_blocks=None, exclusive=False, kernel_initializer=None, reuse=None, name=None, *args, **kwargs )
Defined in tensorflow/contrib/distributions/python/ops/bijectors/masked_autoregressive.py
.
A autoregressively masked dense layer. Analogous to tf.layers.dense
.
See [Germain et al. (2015)][1] for detailed explanation.
inputs
: Tensor input.units
: Python int
scalar representing the dimensionality of the output space.num_blocks
: Python int
scalar representing the number of blocks for the MADE masks.exclusive
: Python bool
scalar representing whether to zero the diagonal of the mask, used for the first layer of a MADE.kernel_initializer
: Initializer function for the weight matrix. If None
(default), weights are initialized using the tf.glorot_random_initializer
.reuse
: Python bool
scalar representing whether to reuse the weights of a previous layer by the same name.name
: Python str
used to describe ops managed by this function.*args
: tf.layers.dense
arguments.**kwargs
: tf.layers.dense
keyword arguments.Output tensor.
NotImplementedError
: if rightmost dimension of inputs
is unknown prior to graph execution.[1]: Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked Autoencoder for Distribution Estimation. In International Conference on Machine Learning, 2015. https://arxiv.org/abs/1502.03509
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/distributions/bijectors/masked_dense