W3cubDocs

/TensorFlow Python

tf.contrib.distributions.bijectors.Permute

Class Permute

Inherits From: Bijector

Defined in tensorflow/contrib/distributions/python/ops/bijectors/permute.py.

Permutes the rightmost dimension of a Tensor.

tfd = tf.contrib.distributions

reverse = tfd.bijectors.Permute(permutation=[2, 1, 0])

reverse.forward([-1., 0., 1.])
# ==> [1., 0., -1]

reverse.inverse([1., 0., -1])
# ==> [-1., 0., 1.]

reverse.forward_log_det_jacobian(any_value)
# ==> 0.

reverse.inverse_log_det_jacobian(any_value)
# ==> 0.
def init_once(x, name):
  return tf.get_variable(name, initializer=x, trainable=False)

Permute(permutation=init_once(
    np.random.permutation(event_size).astype("int32"),
    name="permutation"))

Properties

dtype

dtype of Tensors transformable by this distribution.

event_ndims

Returns then number of event dimensions this bijector operates on.

graph_parents

Returns this Bijector's graph_parents as a Python list.

is_constant_jacobian

Returns true iff the Jacobian is not a function of x.

Note: Jacobian is either constant for both forward and inverse or neither.

Returns:

  • is_constant_jacobian: Python bool.

name

Returns the string name of this Bijector.

permutation

validate_args

Returns True if Tensor arguments will be validated.

Methods

__init__

__init__(
    permutation,
    validate_args=False,
    name=None
)

Creates the Permute bijector.

Args:

  • permutation: An int-like vector-shaped Tensor representing the permutation to apply to the rightmost dimension of the transformed Tensor.
  • validate_args: Python bool indicating whether arguments should be checked for correctness.
  • name: Python str, name given to ops managed by this object.

Raises:

  • TypeError: if not permutation.dtype.is_integer.
  • ValueError: if permutation does not contain exactly one of each of {0, 1, ..., d}.

forward

forward(
    x,
    name='forward'
)

Returns the forward Bijector evaluation, i.e., X = g(Y).

Args:

  • x: Tensor. The input to the "forward" evaluation.
  • name: The name to give this op.

Returns:

Tensor.

Raises:

  • TypeError: if self.dtype is specified and x.dtype is not self.dtype.
  • NotImplementedError: if _forward is not implemented.

forward_event_shape

forward_event_shape(input_shape)

Shape of a single sample from a single batch as a TensorShape.

Same meaning as forward_event_shape_tensor. May be only partially defined.

Args:

  • input_shape: TensorShape indicating event-portion shape passed into forward function.

Returns:

  • forward_event_shape_tensor: TensorShape indicating event-portion shape after applying forward. Possibly unknown.

forward_event_shape_tensor

forward_event_shape_tensor(
    input_shape,
    name='forward_event_shape_tensor'
)

Shape of a single sample from a single batch as an int32 1D Tensor.

Args:

  • input_shape: Tensor, int32 vector indicating event-portion shape passed into forward function.
  • name: name to give to the op

Returns:

  • forward_event_shape_tensor: Tensor, int32 vector indicating event-portion shape after applying forward.

forward_log_det_jacobian

forward_log_det_jacobian(
    x,
    name='forward_log_det_jacobian'
)

Returns both the forward_log_det_jacobian.

Args:

  • x: Tensor. The input to the "forward" Jacobian evaluation.
  • name: The name to give this op.

Returns:

Tensor, if this bijector is injective. If not injective this is not implemented.

Raises:

  • TypeError: if self.dtype is specified and y.dtype is not self.dtype.
  • NotImplementedError: if neither _forward_log_det_jacobian nor {_inverse, _inverse_log_det_jacobian} are implemented, or this is a non-injective bijector.

inverse

inverse(
    y,
    name='inverse'
)

Returns the inverse Bijector evaluation, i.e., X = g^{-1}(Y).

Args:

  • y: Tensor. The input to the "inverse" evaluation.
  • name: The name to give this op.

Returns:

Tensor, if this bijector is injective. If not injective, returns the k-tuple containing the unique k points (x1, ..., xk) such that g(xi) = y.

Raises:

  • TypeError: if self.dtype is specified and y.dtype is not self.dtype.
  • NotImplementedError: if _inverse is not implemented.

inverse_event_shape

inverse_event_shape(output_shape)

Shape of a single sample from a single batch as a TensorShape.

Same meaning as inverse_event_shape_tensor. May be only partially defined.

Args:

  • output_shape: TensorShape indicating event-portion shape passed into inverse function.

Returns:

  • inverse_event_shape_tensor: TensorShape indicating event-portion shape after applying inverse. Possibly unknown.

inverse_event_shape_tensor

inverse_event_shape_tensor(
    output_shape,
    name='inverse_event_shape_tensor'
)

Shape of a single sample from a single batch as an int32 1D Tensor.

Args:

  • output_shape: Tensor, int32 vector indicating event-portion shape passed into inverse function.
  • name: name to give to the op

Returns:

  • inverse_event_shape_tensor: Tensor, int32 vector indicating event-portion shape after applying inverse.

inverse_log_det_jacobian

inverse_log_det_jacobian(
    y,
    name='inverse_log_det_jacobian'
)

Returns the (log o det o Jacobian o inverse)(y).

Mathematically, returns: log(det(dX/dY))(Y). (Recall that: X=g^{-1}(Y).)

Note that forward_log_det_jacobian is the negative of this function, evaluated at g^{-1}(y).

Args:

  • y: Tensor. The input to the "inverse" Jacobian evaluation.
  • name: The name to give this op.

Returns:

Tensor, if this bijector is injective. If not injective, returns the tuple of local log det Jacobians, log(det(Dg_i^{-1}(y))), where g_i is the restriction of g to the ith partition Di.

Raises:

  • TypeError: if self.dtype is specified and y.dtype is not self.dtype.
  • NotImplementedError: if _inverse_log_det_jacobian is not implemented.

© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/distributions/bijectors/Permute