SoftmaxCentered
Inherits From: Bijector
Defined in tensorflow/contrib/distributions/python/ops/bijectors/softmax_centered.py.
See the guide: Random variable transformations (contrib) > Bijectors
Bijector which computes Y = g(X) = exp([X 0]) / sum(exp([X 0])).
To implement softmax as a bijection, the forward transformation appends a value to the input and the inverse removes this coordinate. The appended coordinate represents a pivot, e.g., softmax(x) = exp(x-c) / sum(exp(x-c)) where c is the implicit last coordinate.
Example Use:
bijector.SoftmaxCentered().forward(tf.log([2, 3, 4])) # Result: [0.2, 0.3, 0.4, 0.1] # Extra result: 0.1 bijector.SoftmaxCentered().inverse([0.2, 0.3, 0.4, 0.1]) # Result: tf.log([2, 3, 4]) # Extra coordinate removed.
At first blush it may seem like the Invariance of domain theorem implies this implementation is not a bijection. However, the appended dimension makes the (forward) image non-open and the theorem does not directly apply.
dtypedtype of Tensors transformable by this distribution.
event_ndimsReturns then number of event dimensions this bijector operates on.
graph_parentsReturns this Bijector's graph_parents as a Python list.
is_constant_jacobianReturns true iff the Jacobian is not a function of x.
Note: Jacobian is either constant for both forward and inverse or neither.
is_constant_jacobian: Python bool.nameReturns the string name of this Bijector.
validate_argsReturns True if Tensor arguments will be validated.
__init____init__(
validate_args=False,
name='softmax_centered'
)
Constructs Bijector.
A Bijector transforms random variables into new random variables.
Examples:
# Create the Y = g(X) = X transform which operates on vector events. identity = Identity(event_ndims=1) # Create the Y = g(X) = exp(X) transform which operates on matrices. exp = Exp(event_ndims=2)
See Bijector subclass docstring for more details and specific examples.
event_ndims: number of dimensions associated with event coordinates.graph_parents: Python list of graph prerequisites of this Bijector.is_constant_jacobian: Python bool indicating that the Jacobian is not a function of the input.validate_args: Python bool, default False. Whether to validate input with asserts. If validate_args is False, and the inputs are invalid, correct behavior is not guaranteed.dtype: tf.dtype supported by this Bijector. None means dtype is not enforced.name: The name to give Ops created by the initializer.ValueError: If a member of graph_parents is not a Tensor.forwardforward(
x,
name='forward'
)
Returns the forward Bijector evaluation, i.e., X = g(Y).
x: Tensor. The input to the "forward" evaluation.name: The name to give this op.Tensor.
TypeError: if self.dtype is specified and x.dtype is not self.dtype.NotImplementedError: if _forward is not implemented.forward_event_shapeforward_event_shape(input_shape)
Shape of a single sample from a single batch as a TensorShape.
Same meaning as forward_event_shape_tensor. May be only partially defined.
input_shape: TensorShape indicating event-portion shape passed into forward function.forward_event_shape_tensor: TensorShape indicating event-portion shape after applying forward. Possibly unknown.forward_event_shape_tensorforward_event_shape_tensor(
input_shape,
name='forward_event_shape_tensor'
)
Shape of a single sample from a single batch as an int32 1D Tensor.
input_shape: Tensor, int32 vector indicating event-portion shape passed into forward function.name: name to give to the opforward_event_shape_tensor: Tensor, int32 vector indicating event-portion shape after applying forward.forward_log_det_jacobianforward_log_det_jacobian(
x,
name='forward_log_det_jacobian'
)
Returns both the forward_log_det_jacobian.
x: Tensor. The input to the "forward" Jacobian evaluation.name: The name to give this op.Tensor, if this bijector is injective. If not injective this is not implemented.
TypeError: if self.dtype is specified and y.dtype is not self.dtype.NotImplementedError: if neither _forward_log_det_jacobian nor {_inverse, _inverse_log_det_jacobian} are implemented, or this is a non-injective bijector.inverseinverse(
y,
name='inverse'
)
Returns the inverse Bijector evaluation, i.e., X = g^{-1}(Y).
y: Tensor. The input to the "inverse" evaluation.name: The name to give this op.Tensor, if this bijector is injective. If not injective, returns the k-tuple containing the unique k points (x1, ..., xk) such that g(xi) = y.
TypeError: if self.dtype is specified and y.dtype is not self.dtype.NotImplementedError: if _inverse is not implemented.inverse_event_shapeinverse_event_shape(output_shape)
Shape of a single sample from a single batch as a TensorShape.
Same meaning as inverse_event_shape_tensor. May be only partially defined.
output_shape: TensorShape indicating event-portion shape passed into inverse function.inverse_event_shape_tensor: TensorShape indicating event-portion shape after applying inverse. Possibly unknown.inverse_event_shape_tensorinverse_event_shape_tensor(
output_shape,
name='inverse_event_shape_tensor'
)
Shape of a single sample from a single batch as an int32 1D Tensor.
output_shape: Tensor, int32 vector indicating event-portion shape passed into inverse function.name: name to give to the opinverse_event_shape_tensor: Tensor, int32 vector indicating event-portion shape after applying inverse.inverse_log_det_jacobianinverse_log_det_jacobian(
y,
name='inverse_log_det_jacobian'
)
Returns the (log o det o Jacobian o inverse)(y).
Mathematically, returns: log(det(dX/dY))(Y). (Recall that: X=g^{-1}(Y).)
Note that forward_log_det_jacobian is the negative of this function, evaluated at g^{-1}(y).
y: Tensor. The input to the "inverse" Jacobian evaluation.name: The name to give this op.Tensor, if this bijector is injective. If not injective, returns the tuple of local log det Jacobians, log(det(Dg_i^{-1}(y))), where g_i is the restriction of g to the ith partition Di.
TypeError: if self.dtype is specified and y.dtype is not self.dtype.NotImplementedError: if _inverse_log_det_jacobian is not implemented.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/distributions/bijectors/SoftmaxCentered