tf.contrib.distributions.quadrature_scheme_softmaxnormal_gauss_hermite( normal_loc, normal_scale, quadrature_size, validate_args=False, name=None )
Defined in tensorflow/contrib/distributions/python/ops/vector_diffeomixture.py
.
Use Gauss-Hermite quadrature to form quadrature on K - 1
simplex.
A SoftmaxNormal
random variable Y
may be generated via
Y = SoftmaxCentered(X), X = Normal(normal_loc, normal_scale)
Note: for a givenquadrature_size
, this method is generally less accurate thanquadrature_scheme_softmaxnormal_quantiles
.
normal_loc
: float
-like Tensor
with shape [b1, ..., bB, K-1]
, B>=0. The location parameter of the Normal used to construct the SoftmaxNormal.normal_scale
: float
-like Tensor
. Broadcastable with normal_loc
. The scale parameter of the Normal used to construct the SoftmaxNormal.quadrature_size
: Python int
scalar representing the number of quadrature points.validate_args
: Python bool
, default False
. When True
distribution parameters are checked for validity despite possibly degrading runtime performance. When False
invalid inputs may silently render incorrect outputs.name
: Python str
name prefixed to Ops created by this class.grid
: Shape [b1, ..., bB, K, quadrature_size]
Tensor
representing the convex combination of affine parameters for K
components. grid[..., :, n]
is the n
-th grid point, living in the K - 1
simplex.probs
: Shape [b1, ..., bB, K, quadrature_size]
Tensor
representing the associated with each grid point.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/distributions/quadrature_scheme_softmaxnormal_gauss_hermite