W3cubDocs

/TensorFlow Python

tf.contrib.distributions.TransformedDistribution

Class TransformedDistribution

Inherits From: Distribution

Defined in tensorflow/python/ops/distributions/transformed_distribution.py.

See the guide: Statistical Distributions (contrib) > Transformed distributions

A Transformed Distribution.

A TransformedDistribution models p(y) given a base distribution p(x), and a deterministic, invertible, differentiable transform, Y = g(X). The transform is typically an instance of the Bijector class and the base distribution is typically an instance of the Distribution class.

A Bijector is expected to implement the following functions: - forward, - inverse, - inverse_log_det_jacobian. The semantics of these functions are outlined in the Bijector documentation.

We now describe how a TransformedDistribution alters the input/outputs of a Distribution associated with a random variable (rv) X.

Write cdf(Y=y) for an absolutely continuous cumulative distribution function of random variable Y; write the probability density function pdf(Y=y) := d^k / (dy_1,...,dy_k) cdf(Y=y) for its derivative wrt to Y evaluated at y. Assume that Y = g(X) where g is a deterministic diffeomorphism, i.e., a non-random, continuous, differentiable, and invertible function. Write the inverse of g as X = g^{-1}(Y) and (J o g)(x) for the Jacobian of g evaluated at x.

A TransformedDistribution implements the following operations:

  • sample Mathematically: Y = g(X) Programmatically: bijector.forward(distribution.sample(...))

  • log_prob Mathematically: (log o pdf)(Y=y) = (log o pdf o g^{-1})(y) + (log o abs o det o J o g^{-1})(y) Programmatically: (distribution.log_prob(bijector.inverse(y)) + bijector.inverse_log_det_jacobian(y))

  • log_cdf Mathematically: (log o cdf)(Y=y) = (log o cdf o g^{-1})(y) Programmatically: distribution.log_cdf(bijector.inverse(x))

  • and similarly for: cdf, prob, log_survival_function, survival_function.

A simple example constructing a Log-Normal distribution from a Normal distribution:

ds = tf.contrib.distributions
log_normal = ds.TransformedDistribution(
  distribution=ds.Normal(loc=0., scale=1.),
  bijector=ds.bijectors.Exp(),
  name="LogNormalTransformedDistribution")

A LogNormal made from callables:

ds = tf.contrib.distributions
log_normal = ds.TransformedDistribution(
  distribution=ds.Normal(loc=0., scale=1.),
  bijector=ds.bijectors.Inline(
    forward_fn=tf.exp,
    inverse_fn=tf.log,
    inverse_log_det_jacobian_fn=(
      lambda y: -tf.reduce_sum(tf.log(y), axis=-1)),
  name="LogNormalTransformedDistribution")

Another example constructing a Normal from a StandardNormal:

ds = tf.contrib.distributions
normal = ds.TransformedDistribution(
  distribution=ds.Normal(loc=0., scale=1.),
  bijector=ds.bijectors.Affine(
    shift=-1.,
    scale_identity_multiplier=2.,
    event_ndims=0),
  name="NormalTransformedDistribution")

A TransformedDistribution's batch- and event-shape are implied by the base distribution unless explicitly overridden by batch_shape or event_shape arguments. Specifying an overriding batch_shape (event_shape) is permitted only if the base distribution has scalar batch-shape (event-shape). The bijector is applied to the distribution as if the distribution possessed the overridden shape(s). The following example demonstrates how to construct a multivariate Normal as a TransformedDistribution.

ds = tf.contrib.distributions
# We will create two MVNs with batch_shape = event_shape = 2.
mean = [[-1., 0],      # batch:0
        [0., 1]]       # batch:1
chol_cov = [[[1., 0],
             [0, 1]],  # batch:0
            [[1, 0],
             [2, 2]]]  # batch:1
mvn1 = ds.TransformedDistribution(
    distribution=ds.Normal(loc=0., scale=1.),
    bijector=ds.bijectors.Affine(shift=mean, scale_tril=chol_cov),
    batch_shape=[2],  # Valid because base_distribution.batch_shape == [].
    event_shape=[2])  # Valid because base_distribution.event_shape == [].
mvn2 = ds.MultivariateNormalTriL(loc=mean, scale_tril=chol_cov)
# mvn1.log_prob(x) == mvn2.log_prob(x)

Properties

allow_nan_stats

Python bool describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined.

Returns:

  • allow_nan_stats: Python bool.

batch_shape

Shape of a single sample from a single event index as a TensorShape.

May be partially defined or unknown.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Returns:

  • batch_shape: TensorShape, possibly unknown.

bijector

Function transforming x => y.

distribution

Base distribution, p(x).

dtype

The DType of Tensors handled by this Distribution.

event_shape

Shape of a single sample from a single batch as a TensorShape.

May be partially defined or unknown.

Returns:

  • event_shape: TensorShape, possibly unknown.

name

Name prepended to all ops created by this Distribution.

parameters

Dictionary of parameters used to instantiate this Distribution.

reparameterization_type

Describes how samples from the distribution are reparameterized.

Currently this is one of the static instances distributions.FULLY_REPARAMETERIZED or distributions.NOT_REPARAMETERIZED.

Returns:

An instance of ReparameterizationType.

validate_args

Python bool indicating possibly expensive checks are enabled.

Methods

__init__

__init__(
    distribution,
    bijector=None,
    batch_shape=None,
    event_shape=None,
    validate_args=False,
    name=None
)

Construct a Transformed Distribution.

Args:

  • distribution: The base distribution instance to transform. Typically an instance of Distribution.
  • bijector: The object responsible for calculating the transformation. Typically an instance of Bijector. None means Identity().
  • batch_shape: integer vector Tensor which overrides distribution batch_shape; valid only if distribution.is_scalar_batch().
  • event_shape: integer vector Tensor which overrides distribution event_shape; valid only if distribution.is_scalar_event().
  • validate_args: Python bool, default False. When True distribution parameters are checked for validity despite possibly degrading runtime performance. When False invalid inputs may silently render incorrect outputs.
  • name: Python str name prefixed to Ops created by this class. Default: bijector.name + distribution.name.

batch_shape_tensor

batch_shape_tensor(name='batch_shape_tensor')

Shape of a single sample from a single event index as a 1-D Tensor.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Args:

  • name: name to give to the op

Returns:

  • batch_shape: Tensor.

cdf

cdf(
    value,
    name='cdf'
)

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

  • cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

copy

copy(**override_parameters_kwargs)

Creates a deep copy of the distribution.

Note: the copy distribution may continue to depend on the original initialization arguments.

Args:

  • **override_parameters_kwargs: String/value dictionary of initialization arguments to override with new values.

Returns:

  • distribution: A new instance of type(self) initialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs).

covariance

covariance(name='covariance')

Covariance.

Covariance is (possibly) defined only for non-scalar-event distributions.

For example, for a length-k, vector-valued distribution, it is calculated as,

Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]

where Cov is a (batch of) k x k matrix, 0 <= (i, j) < k, and E denotes expectation.

Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), Covariance shall return a (batch of) matrices under some vectorization of the events, i.e.,

Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]

where Cov is a (batch of) k' x k' matrices, 0 <= (i, j) < k' = reduce_prod(event_shape), and Vec is some function mapping indices of this distribution's event dimensions to indices of a length-k' vector.

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • covariance: Floating-point Tensor with shape [B1, ..., Bn, k', k'] where the first n dimensions are batch coordinates and k' = reduce_prod(self.event_shape).

cross_entropy

cross_entropy(
    other,
    name='cross_entropy'
)

Computes the (Shannon) cross entropy.

Denote this distribution (self) by P and the other distribution by Q. Assuming P, Q are absolutely continuous with respect to one another and permit densities p(x) dr(x) and q(x) dr(x), (Shanon) cross entropy is defined as:

H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)

where F denotes the support of the random variable X ~ P.

Args:

Returns:

  • cross_entropy: self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of (Shanon) cross entropy.

entropy

entropy(name='entropy')

Shannon entropy in nats.

event_shape_tensor

event_shape_tensor(name='event_shape_tensor')

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

  • name: name to give to the op

Returns:

  • event_shape: Tensor.

is_scalar_batch

is_scalar_batch(name='is_scalar_batch')

Indicates that batch_shape == [].

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • is_scalar_batch: bool scalar Tensor.

is_scalar_event

is_scalar_event(name='is_scalar_event')

Indicates that event_shape == [].

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • is_scalar_event: bool scalar Tensor.

kl_divergence

kl_divergence(
    other,
    name='kl_divergence'
)

Computes the Kullback--Leibler divergence.

Denote this distribution (self) by p and the other distribution by q. Assuming p, q are absolutely continuous with respect to reference measure r, the KL divergence is defined as:

KL[p, q] = E_p[log(p(X)/q(X))]
         = -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
         = H[p, q] - H[p]

where F denotes the support of the random variable X ~ p, H[., .] denotes (Shanon) cross entropy, and H[.] denotes (Shanon) entropy.

Args:

Returns:

  • kl_divergence: self.dtype Tensor with shape [B1, ..., Bn] representing n different calculations of the Kullback-Leibler divergence.

log_cdf

log_cdf(
    value,
    name='log_cdf'
)

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[ P[X <= x] ]

Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

  • logcdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

log_prob

log_prob(
    value,
    name='log_prob'
)

Log probability density/mass function.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

  • log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

log_survival_function

log_survival_function(
    value,
    name='log_survival_function'
)

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[ P[X > x] ]
                         = Log[ 1 - P[X <= x] ]
                         = Log[ 1 - cdf(x) ]

Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

mean

mean(name='mean')

Mean.

mode

mode(name='mode')

Mode.

param_shapes

param_shapes(
    cls,
    sample_shape,
    name='DistributionParamShapes'
)

Shapes of parameters given the desired shape of a call to sample().

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample().

Subclasses should override class method _param_shapes.

Args:

  • sample_shape: Tensor or python list/tuple. Desired shape of a call to sample().
  • name: name to prepend ops with.

Returns:

dict of parameter name to Tensor shapes.

param_static_shapes

param_static_shapes(
    cls,
    sample_shape
)

param_shapes with static (i.e. TensorShape) shapes.

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample(). Assumes that the sample's shape is known statically.

Subclasses should override class method _param_shapes to return constant-valued tensors when constant values are fed.

Args:

  • sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample().

Returns:

dict of parameter name to TensorShape.

Raises:

  • ValueError: if sample_shape is a TensorShape and is not fully defined.

prob

prob(
    value,
    name='prob'
)

Probability density/mass function.

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

  • prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

quantile

quantile(
    value,
    name='quantile'
)

Quantile function. Aka "inverse cdf" or "percent point function".

Given random variable X and p in [0, 1], the quantile is:

quantile(p) := x such that P[X <= x] == p

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

  • quantile: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

sample

sample(
    sample_shape=(),
    seed=None,
    name='sample'
)

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single sample.

Args:

  • sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples.
  • seed: Python integer seed for RNG
  • name: name to give to the op.

Returns:

  • samples: a Tensor with prepended dimensions sample_shape.

stddev

stddev(name='stddev')

Standard deviation.

Standard deviation is defined as,

stddev = E[(X - E[X])**2]**0.5

where X is the random variable associated with this distribution, E denotes expectation, and stddev.shape = batch_shape + event_shape.

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • stddev: Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().

survival_function

survival_function(
    value,
    name='survival_function'
)

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
                     = 1 - P[X <= x]
                     = 1 - cdf(x).

Args:

  • value: float or double Tensor.
  • name: Python str prepended to names of ops created by this function.

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

variance

variance(name='variance')

Variance.

Variance is defined as,

Var = E[(X - E[X])**2]

where X is the random variable associated with this distribution, E denotes expectation, and Var.shape = batch_shape + event_shape.

Args:

  • name: Python str prepended to names of ops created by this function.

Returns:

  • variance: Floating-point Tensor with shape identical to batch_shape + event_shape, i.e., the same shape as self.mean().

© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/distributions/TransformedDistribution