TransformedDistribution
Inherits From: Distribution
Defined in tensorflow/python/ops/distributions/transformed_distribution.py
.
See the guide: Statistical Distributions (contrib) > Transformed distributions
A Transformed Distribution.
A TransformedDistribution
models p(y)
given a base distribution p(x)
, and a deterministic, invertible, differentiable transform, Y = g(X)
. The transform is typically an instance of the Bijector
class and the base distribution is typically an instance of the Distribution
class.
A Bijector
is expected to implement the following functions: - forward
, - inverse
, - inverse_log_det_jacobian
. The semantics of these functions are outlined in the Bijector
documentation.
We now describe how a TransformedDistribution
alters the input/outputs of a Distribution
associated with a random variable (rv) X
.
Write cdf(Y=y)
for an absolutely continuous cumulative distribution function of random variable Y
; write the probability density function pdf(Y=y) := d^k / (dy_1,...,dy_k) cdf(Y=y)
for its derivative wrt to Y
evaluated at y
. Assume that Y = g(X)
where g
is a deterministic diffeomorphism, i.e., a non-random, continuous, differentiable, and invertible function. Write the inverse of g
as X = g^{-1}(Y)
and (J o g)(x)
for the Jacobian of g
evaluated at x
.
A TransformedDistribution
implements the following operations:
sample
Mathematically: Y = g(X)
Programmatically: bijector.forward(distribution.sample(...))
log_prob
Mathematically: (log o pdf)(Y=y) = (log o pdf o g^{-1})(y) + (log o abs o det o J o g^{-1})(y)
Programmatically: (distribution.log_prob(bijector.inverse(y)) + bijector.inverse_log_det_jacobian(y))
log_cdf
Mathematically: (log o cdf)(Y=y) = (log o cdf o g^{-1})(y)
Programmatically: distribution.log_cdf(bijector.inverse(x))
and similarly for: cdf
, prob
, log_survival_function
, survival_function
.
A simple example constructing a Log-Normal distribution from a Normal distribution:
ds = tf.contrib.distributions log_normal = ds.TransformedDistribution( distribution=ds.Normal(loc=0., scale=1.), bijector=ds.bijectors.Exp(), name="LogNormalTransformedDistribution")
A LogNormal
made from callables:
ds = tf.contrib.distributions log_normal = ds.TransformedDistribution( distribution=ds.Normal(loc=0., scale=1.), bijector=ds.bijectors.Inline( forward_fn=tf.exp, inverse_fn=tf.log, inverse_log_det_jacobian_fn=( lambda y: -tf.reduce_sum(tf.log(y), axis=-1)), name="LogNormalTransformedDistribution")
Another example constructing a Normal from a StandardNormal:
ds = tf.contrib.distributions normal = ds.TransformedDistribution( distribution=ds.Normal(loc=0., scale=1.), bijector=ds.bijectors.Affine( shift=-1., scale_identity_multiplier=2., event_ndims=0), name="NormalTransformedDistribution")
A TransformedDistribution
's batch- and event-shape are implied by the base distribution unless explicitly overridden by batch_shape
or event_shape
arguments. Specifying an overriding batch_shape
(event_shape
) is permitted only if the base distribution has scalar batch-shape (event-shape). The bijector is applied to the distribution as if the distribution possessed the overridden shape(s). The following example demonstrates how to construct a multivariate Normal as a TransformedDistribution
.
ds = tf.contrib.distributions # We will create two MVNs with batch_shape = event_shape = 2. mean = [[-1., 0], # batch:0 [0., 1]] # batch:1 chol_cov = [[[1., 0], [0, 1]], # batch:0 [[1, 0], [2, 2]]] # batch:1 mvn1 = ds.TransformedDistribution( distribution=ds.Normal(loc=0., scale=1.), bijector=ds.bijectors.Affine(shift=mean, scale_tril=chol_cov), batch_shape=[2], # Valid because base_distribution.batch_shape == []. event_shape=[2]) # Valid because base_distribution.event_shape == []. mvn2 = ds.MultivariateNormalTriL(loc=mean, scale_tril=chol_cov) # mvn1.log_prob(x) == mvn2.log_prob(x)
allow_nan_stats
Python bool
describing behavior when a stat is undefined.
Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined.
allow_nan_stats
: Python bool
.batch_shape
Shape of a single sample from a single event index as a TensorShape
.
May be partially defined or unknown.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
batch_shape
: TensorShape
, possibly unknown.bijector
Function transforming x => y.
distribution
Base distribution, p(x).
dtype
The DType
of Tensor
s handled by this Distribution
.
event_shape
Shape of a single sample from a single batch as a TensorShape
.
May be partially defined or unknown.
event_shape
: TensorShape
, possibly unknown.name
Name prepended to all ops created by this Distribution
.
parameters
Dictionary of parameters used to instantiate this Distribution
.
reparameterization_type
Describes how samples from the distribution are reparameterized.
Currently this is one of the static instances distributions.FULLY_REPARAMETERIZED
or distributions.NOT_REPARAMETERIZED
.
An instance of ReparameterizationType
.
validate_args
Python bool
indicating possibly expensive checks are enabled.
__init__
__init__( distribution, bijector=None, batch_shape=None, event_shape=None, validate_args=False, name=None )
Construct a Transformed Distribution.
distribution
: The base distribution instance to transform. Typically an instance of Distribution
.bijector
: The object responsible for calculating the transformation. Typically an instance of Bijector
. None
means Identity()
.batch_shape
: integer
vector Tensor
which overrides distribution
batch_shape
; valid only if distribution.is_scalar_batch()
.event_shape
: integer
vector Tensor
which overrides distribution
event_shape
; valid only if distribution.is_scalar_event()
.validate_args
: Python bool
, default False
. When True
distribution parameters are checked for validity despite possibly degrading runtime performance. When False
invalid inputs may silently render incorrect outputs.name
: Python str
name prefixed to Ops created by this class. Default: bijector.name + distribution.name
.batch_shape_tensor
batch_shape_tensor(name='batch_shape_tensor')
Shape of a single sample from a single event index as a 1-D Tensor
.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
name
: name to give to the opbatch_shape
: Tensor
.cdf
cdf( value, name='cdf' )
Cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
cdf(x) := P[X <= x]
value
: float
or double
Tensor
.name
: Python str
prepended to names of ops created by this function.cdf
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.copy
copy(**override_parameters_kwargs)
Creates a deep copy of the distribution.
Note: the copy distribution may continue to depend on the original initialization arguments.
**override_parameters_kwargs
: String/value dictionary of initialization arguments to override with new values.distribution
: A new instance of type(self)
initialized from the union of self.parameters and override_parameters_kwargs, i.e., dict(self.parameters, **override_parameters_kwargs)
.covariance
covariance(name='covariance')
Covariance.
Covariance is (possibly) defined only for non-scalar-event distributions.
For example, for a length-k
, vector-valued distribution, it is calculated as,
Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
where Cov
is a (batch of) k x k
matrix, 0 <= (i, j) < k
, and E
denotes expectation.
Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), Covariance
shall return a (batch of) matrices under some vectorization of the events, i.e.,
Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
where Cov
is a (batch of) k' x k'
matrices, 0 <= (i, j) < k' = reduce_prod(event_shape)
, and Vec
is some function mapping indices of this distribution's event dimensions to indices of a length-k'
vector.
name
: Python str
prepended to names of ops created by this function.covariance
: Floating-point Tensor
with shape [B1, ..., Bn, k', k']
where the first n
dimensions are batch coordinates and k' = reduce_prod(self.event_shape)
.cross_entropy
cross_entropy( other, name='cross_entropy' )
Computes the (Shannon) cross entropy.
Denote this distribution (self
) by P
and the other
distribution by Q
. Assuming P, Q
are absolutely continuous with respect to one another and permit densities p(x) dr(x)
and q(x) dr(x)
, (Shanon) cross entropy is defined as:
H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)
where F
denotes the support of the random variable X ~ P
.
other
: tf.distributions.Distribution
instance.name
: Python str
prepended to names of ops created by this function.cross_entropy
: self.dtype
Tensor
with shape [B1, ..., Bn]
representing n
different calculations of (Shanon) cross entropy.entropy
entropy(name='entropy')
Shannon entropy in nats.
event_shape_tensor
event_shape_tensor(name='event_shape_tensor')
Shape of a single sample from a single batch as a 1-D int32 Tensor
.
name
: name to give to the opevent_shape
: Tensor
.is_scalar_batch
is_scalar_batch(name='is_scalar_batch')
Indicates that batch_shape == []
.
name
: Python str
prepended to names of ops created by this function.is_scalar_batch
: bool
scalar Tensor
.is_scalar_event
is_scalar_event(name='is_scalar_event')
Indicates that event_shape == []
.
name
: Python str
prepended to names of ops created by this function.is_scalar_event
: bool
scalar Tensor
.kl_divergence
kl_divergence( other, name='kl_divergence' )
Computes the Kullback--Leibler divergence.
Denote this distribution (self
) by p
and the other
distribution by q
. Assuming p, q
are absolutely continuous with respect to reference measure r
, the KL divergence is defined as:
KL[p, q] = E_p[log(p(X)/q(X))] = -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x) = H[p, q] - H[p]
where F
denotes the support of the random variable X ~ p
, H[., .]
denotes (Shanon) cross entropy, and H[.]
denotes (Shanon) entropy.
other
: tf.distributions.Distribution
instance.name
: Python str
prepended to names of ops created by this function.kl_divergence
: self.dtype
Tensor
with shape [B1, ..., Bn]
representing n
different calculations of the Kullback-Leibler divergence.log_cdf
log_cdf( value, name='log_cdf' )
Log cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
log_cdf(x) := Log[ P[X <= x] ]
Often, a numerical approximation can be used for log_cdf(x)
that yields a more accurate answer than simply taking the logarithm of the cdf
when x << -1
.
value
: float
or double
Tensor
.name
: Python str
prepended to names of ops created by this function.logcdf
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.log_prob
log_prob( value, name='log_prob' )
Log probability density/mass function.
value
: float
or double
Tensor
.name
: Python str
prepended to names of ops created by this function.log_prob
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.log_survival_function
log_survival_function( value, name='log_survival_function' )
Log survival function.
Given random variable X
, the survival function is defined:
log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ]
Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x)
when x >> 1
.
value
: float
or double
Tensor
.name
: Python str
prepended to names of ops created by this function.Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.
mean
mean(name='mean')
Mean.
mode
mode(name='mode')
Mode.
param_shapes
param_shapes( cls, sample_shape, name='DistributionParamShapes' )
Shapes of parameters given the desired shape of a call to sample()
.
This is a class method that describes what key/value arguments are required to instantiate the given Distribution
so that a particular shape is returned for that instance's call to sample()
.
Subclasses should override class method _param_shapes
.
sample_shape
: Tensor
or python list/tuple. Desired shape of a call to sample()
.name
: name to prepend ops with.dict
of parameter name to Tensor
shapes.
param_static_shapes
param_static_shapes( cls, sample_shape )
param_shapes with static (i.e. TensorShape
) shapes.
This is a class method that describes what key/value arguments are required to instantiate the given Distribution
so that a particular shape is returned for that instance's call to sample()
. Assumes that the sample's shape is known statically.
Subclasses should override class method _param_shapes
to return constant-valued tensors when constant values are fed.
sample_shape
: TensorShape
or python list/tuple. Desired shape of a call to sample()
.dict
of parameter name to TensorShape
.
ValueError
: if sample_shape
is a TensorShape
and is not fully defined.prob
prob( value, name='prob' )
Probability density/mass function.
value
: float
or double
Tensor
.name
: Python str
prepended to names of ops created by this function.prob
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.quantile
quantile( value, name='quantile' )
Quantile function. Aka "inverse cdf" or "percent point function".
Given random variable X
and p in [0, 1]
, the quantile
is:
quantile(p) := x such that P[X <= x] == p
value
: float
or double
Tensor
.name
: Python str
prepended to names of ops created by this function.quantile
: a Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.sample
sample( sample_shape=(), seed=None, name='sample' )
Generate samples of the specified shape.
Note that a call to sample()
without arguments will generate a single sample.
sample_shape
: 0D or 1D int32
Tensor
. Shape of the generated samples.seed
: Python integer seed for RNGname
: name to give to the op.samples
: a Tensor
with prepended dimensions sample_shape
.stddev
stddev(name='stddev')
Standard deviation.
Standard deviation is defined as,
stddev = E[(X - E[X])**2]**0.5
where X
is the random variable associated with this distribution, E
denotes expectation, and stddev.shape = batch_shape + event_shape
.
name
: Python str
prepended to names of ops created by this function.stddev
: Floating-point Tensor
with shape identical to batch_shape + event_shape
, i.e., the same shape as self.mean()
.survival_function
survival_function( value, name='survival_function' )
Survival function.
Given random variable X
, the survival function is defined:
survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x).
value
: float
or double
Tensor
.name
: Python str
prepended to names of ops created by this function.Tensor
of shape sample_shape(x) + self.batch_shape
with values of type self.dtype
.
variance
variance(name='variance')
Variance.
Variance is defined as,
Var = E[(X - E[X])**2]
where X
is the random variable associated with this distribution, E
denotes expectation, and Var.shape = batch_shape + event_shape
.
name
: Python str
prepended to names of ops created by this function.variance
: Floating-point Tensor
with shape identical to batch_shape + event_shape
, i.e., the same shape as self.mean()
.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/distributions/TransformedDistribution