tf.contrib.estimator.clip_gradients_by_norm(
optimizer,
clip_norm
)
Defined in tensorflow/contrib/estimator/python/estimator/extenders.py.
Returns an optimizer which clips gradients before applying them.
Example:
optimizer = tf.train.ProximalAdagradOptimizer(
learning_rate=0.1,
l1_regularization_strength=0.001)
optimizer = tf.contrib.estimator.clip_gradients_by_norm(
optimizer, clip_norm)
estimator = tf.estimator.DNNClassifier(
feature_columns=[...],
hidden_units=[1024, 512, 256],
optimizer=optimizer)
optimizer: An tf.Optimizer object to apply gradients.clip_norm: A 0-D (scalar) Tensor > 0. The clipping ratio.A tf.Optimizer.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/estimator/clip_gradients_by_norm