tf.contrib.estimator.clip_gradients_by_norm( optimizer, clip_norm )
Defined in tensorflow/contrib/estimator/python/estimator/extenders.py
.
Returns an optimizer which clips gradients before applying them.
Example:
optimizer = tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001) optimizer = tf.contrib.estimator.clip_gradients_by_norm( optimizer, clip_norm) estimator = tf.estimator.DNNClassifier( feature_columns=[...], hidden_units=[1024, 512, 256], optimizer=optimizer)
optimizer
: An tf.Optimizer
object to apply gradients.clip_norm
: A 0-D (scalar) Tensor
> 0. The clipping ratio.A tf.Optimizer
.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/estimator/clip_gradients_by_norm