tf.contrib.feature_column.sequence_categorical_column_with_identity(
key,
num_buckets,
default_value=None
)
Defined in tensorflow/contrib/feature_column/python/feature_column/sequence_feature_column.py.
Returns a feature column that represents sequences of integers.
Pass this to embedding_column or indicator_column to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.
Example:
watches = sequence_categorical_column_with_identity(
'watches', num_buckets=1000)
watches_embedding = embedding_column(watches, dimension=10)
columns = [watches_embedding]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
input_layer, sequence_length = sequence_input_layer(features, columns)
rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size)
outputs, state = tf.nn.dynamic_rnn(
rnn_cell, inputs=input_layer, sequence_length=sequence_length)
key: A unique string identifying the input feature.num_buckets: Range of inputs. Namely, inputs are expected to be in the range [0, num_buckets).default_value: If None, this column's graph operations will fail for out-of-range inputs. Otherwise, this value must be in the range [0, num_buckets), and will replace out-of-range inputs.A _SequenceCategoricalColumn.
ValueError: if num_buckets is less than one.ValueError: if default_value is not in range [0, num_buckets).
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/feature_column/sequence_categorical_column_with_identity