tf.contrib.feature_column.sequence_categorical_column_with_vocabulary_file( key, vocabulary_file, vocabulary_size=None, num_oov_buckets=0, default_value=None, dtype=tf.string )
Defined in tensorflow/contrib/feature_column/python/feature_column/sequence_feature_column.py
.
A sequence of categorical terms where ids use a vocabulary file.
Pass this to embedding_column
or indicator_column
to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.
Example:
states = sequence_categorical_column_with_vocabulary_file( key='states', vocabulary_file='/us/states.txt', vocabulary_size=50, num_oov_buckets=5) states_embedding = embedding_column(states, dimension=10) columns = [states_embedding] features = tf.parse_example(..., features=make_parse_example_spec(columns)) input_layer, sequence_length = sequence_input_layer(features, columns) rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size) outputs, state = tf.nn.dynamic_rnn( rnn_cell, inputs=input_layer, sequence_length=sequence_length)
key
: A unique string identifying the input feature.vocabulary_file
: The vocabulary file name.vocabulary_size
: Number of the elements in the vocabulary. This must be no greater than length of vocabulary_file
, if less than length, later values are ignored. If None, it is set to the length of vocabulary_file
.num_oov_buckets
: Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range [vocabulary_size, vocabulary_size+num_oov_buckets)
based on a hash of the input value. A positive num_oov_buckets
can not be specified with default_value
.default_value
: The integer ID value to return for out-of-vocabulary feature values, defaults to -1
. This can not be specified with a positive num_oov_buckets
.dtype
: The type of features. Only string and integer types are supported.A _SequenceCategoricalColumn
.
ValueError
: vocabulary_file
is missing or cannot be opened.ValueError
: vocabulary_size
is missing or < 1.ValueError
: num_oov_buckets
is a negative integer.ValueError
: num_oov_buckets
and default_value
are both specified.ValueError
: dtype
is neither string nor integer.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/feature_column/sequence_categorical_column_with_vocabulary_file