tf.contrib.feature_column.sequence_numeric_column( key, shape=(1,), default_value=0.0, dtype=tf.float32 )
Defined in tensorflow/contrib/feature_column/python/feature_column/sequence_feature_column.py
.
Returns a feature column that represents sequences of numeric data.
Example:
temperature = sequence_numeric_column('temperature') columns = [temperature] features = tf.parse_example(..., features=make_parse_example_spec(columns)) input_layer, sequence_length = sequence_input_layer(features, columns) rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size) outputs, state = tf.nn.dynamic_rnn( rnn_cell, inputs=input_layer, sequence_length=sequence_length)
key
: A unique string identifying the input features.shape
: The shape of the input data per sequence id. E.g. if shape=(2,)
, each example must contain 2 * sequence_length
values.default_value
: A single value compatible with dtype
that is used for padding the sparse data into a dense Tensor
.dtype
: The type of values.A _SequenceNumericColumn
.
TypeError
: if any dimension in shape is not an int.ValueError
: if any dimension in shape is not a positive integer.ValueError
: if dtype
is not convertible to tf.float32
.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/feature_column/sequence_numeric_column