BoundedTensorSpec
Inherits From: TensorSpec
Defined in tensorflow/python/framework/tensor_spec.py
.
A TensorSpec
that specifies minimum and maximum values.
Example usage:
spec = tensor_spec.BoundedTensorSpec((1, 2, 3), tf.float32, 0, (5, 5, 5)) tf_minimum = tf.convert_to_tensor(spec.minimum, dtype=spec.dtype) tf_maximum = tf.convert_to_tensor(spec.maximum, dtype=spec.dtype)
Bounds are meant to be inclusive. This is especially important for integer types. The following spec will be satisfied by tensors with values in the set {0, 1, 2}:
spec = tensor_spec.BoundedTensorSpec((3, 5), tf.int32, 0, 2)
dtype
Returns the dtype
of elements in the tensor.
is_continuous
Whether spec is continuous.
is_discrete
Whether spec is discrete.
maximum
Returns a NumPy array specifying the maximum bounds (inclusive).
minimum
Returns a NumPy array specifying the minimum bounds (inclusive).
name
Returns the name of the described tensor.
shape
Returns the TensorShape
that represents the shape of the tensor.
__init__
__init__( shape, dtype, minimum, maximum, name=None )
Initializes a new BoundedTensorSpec
.
shape
: Value convertible to tf.TensorShape
. The shape of the tensor.dtype
: Value convertible to tf.DType
. The type of the tensor values.minimum
: Number or sequence specifying the minimum element bounds (inclusive). Must be broadcastable to shape
.maximum
: Number or sequence specifying the maximum element bounds (inclusive). Must be broadcastable to shape
.name
: Optional string containing a semantic name for the corresponding array. Defaults to None
.ValueError
: If minimum
or maximum
are not provided or not broadcastable to shape
.TypeError
: If the shape is not an iterable or if the dtype
is an invalid numpy dtype.__eq__
__eq__(other)
Return self==value.
__ne__
__ne__(other)
Return self!=value.
__reduce__
__reduce__()
helper for pickle
from_spec
@classmethod from_spec( cls, spec )
from_tensor
from_tensor( cls, tensor, name=None )
is_bounded
@classmethod is_bounded(cls)
is_compatible_with
is_compatible_with(spec_or_tensor)
True if the shape and dtype of spec_or_tensor
are compatible.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/framework/BoundedTensorSpec