tf.contrib.gan.eval.classifier_metrics.run_inceptiontf.contrib.gan.eval.run_inceptiontf.contrib.gan.eval.run_inception(
images,
graph_def=None,
default_graph_def_fn=_default_graph_def_fn,
image_size=INCEPTION_DEFAULT_IMAGE_SIZE,
input_tensor=INCEPTION_INPUT,
output_tensor=INCEPTION_OUTPUT
)
Defined in tensorflow/contrib/gan/python/eval/python/classifier_metrics_impl.py.
Run images through a pretrained Inception classifier.
images: Input tensors. Must be [batch, height, width, channels]. Input shape and values must be in [-1, 1], which can be achieved using preprocess_image.graph_def: A GraphDef proto of a pretrained Inception graph. If None, call default_graph_def_fn to get GraphDef.default_graph_def_fn: A function that returns a GraphDef. Used if graph_def is `None. By default, returns a pretrained InceptionV3 graph.image_size: Required image width and height. See unit tests for the default values.input_tensor: Name of input Tensor.output_tensor: Name or list of output Tensors. This function will compute activations at the specified layer. Examples include INCEPTION_V3_OUTPUT and INCEPTION_V3_FINAL_POOL which would result in this function computing the final logits or the penultimate pooling layer.Tensor or Tensors corresponding to computed output_tensor.
ValueError: If images are not the correct size.ValueError: If neither graph_def nor default_graph_def_fn are provided.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/gan/eval/run_inception