tf.contrib.gan.losses.wargs.acgan_generator_loss( discriminator_gen_classification_logits, one_hot_labels, weights=1.0, scope=None, loss_collection=tf.GraphKeys.LOSSES, reduction=losses.Reduction.SUM_BY_NONZERO_WEIGHTS, add_summaries=False )
Defined in tensorflow/contrib/gan/python/losses/python/losses_impl.py
.
ACGAN loss for the generator.
The ACGAN loss adds a classification loss to the conditional discriminator. Therefore, the discriminator must output a tuple consisting of (1) the real/fake prediction and (2) the logits for the classification (usually the last conv layer, flattened).
For more details: ACGAN: https://arxiv.org/abs/1610.09585
discriminator_gen_classification_logits
: Classification logits for generated data.one_hot_labels
: A Tensor holding one-hot labels for the batch.weights
: Optional Tensor
whose rank is either 0, or the same rank as discriminator_gen_classification_logits
, and must be broadcastable to discriminator_gen_classification_logits
(i.e., all dimensions must be either 1
, or the same as the corresponding dimension).scope
: The scope for the operations performed in computing the loss.loss_collection
: collection to which this loss will be added.reduction
: A tf.losses.Reduction
to apply to loss.add_summaries
: Whether or not to add summaries for the loss.A loss Tensor. Shape depends on reduction
.
ValueError
: if arg module not either generator
or discriminator
TypeError
: if the discriminator does not output a tuple.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/gan/losses/wargs/acgan_generator_loss