tf.contrib.layers.bow_encoder( ids, vocab_size, embed_dim, sparse_lookup=True, initializer=None, regularizer=None, trainable=True, scope=None, reuse=None )
Defined in tensorflow/contrib/layers/python/layers/encoders.py
.
Maps a sequence of symbols to a vector per example by averaging embeddings.
ids
: [batch_size, doc_length]
Tensor
or SparseTensor
of type int32
or int64
with symbol ids.vocab_size
: Integer number of symbols in vocabulary.embed_dim
: Integer number of dimensions for embedding matrix.sparse_lookup
: bool
, if True
, converts ids to a SparseTensor
and performs a sparse embedding lookup. This is usually faster, but not desirable if padding tokens should have an embedding. Empty rows are assigned a special embedding.initializer
: An initializer for the embeddings, if None
default for current scope is used.regularizer
: Optional regularizer for the embeddings.trainable
: If True
also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES
(see tf.Variable).scope
: Optional string specifying the variable scope for the op, required if reuse=True
.reuse
: If True
, variables inside the op will be reused.Encoding Tensor
[batch_size, embed_dim]
produced by averaging embeddings.
ValueError
: If embed_dim
or vocab_size
are not specified.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/layers/bow_encoder