tf.contrib.layers.conv3d_transpose
tf.contrib.layers.convolution3d_transpose
tf.contrib.layers.conv3d_transpose( inputs, num_outputs, kernel_size, stride=1, padding='SAME', data_format=DATA_FORMAT_NDHWC, activation_fn=tf.nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=tf.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None )
Defined in tensorflow/contrib/layers/python/layers/layers.py
.
Adds a convolution3d_transpose with an optional batch normalization layer.
The function creates a variable called weights
, representing the kernel, that is convolved with the input. If batch_norm_params
is None
, a second variable called 'biases' is added to the result of the operation.
inputs
: A 5-D Tensor
of type float
and shape [batch, depth, height, width, in_channels]
for NDHWC
data format or [batch, in_channels, depth, height, width]
for NCDHW
data format.num_outputs
: Integer, the number of output filters.kernel_size
: A list of length 3 holding the [kernel_depth, kernel_height, kernel_width] of the filters. Can be an int if both values are the same.stride
: A list of length 3: [stride_depth, stride_height, stride_width]. Can be an int if both strides are the same. Note that presently both strides must have the same value.padding
: One of 'VALID' or 'SAME'.data_format
: A string. NDHWC
(default) and NCDHW
are supported.activation_fn
: Activation function. The default value is a ReLU function. Explicitly set it to None to skip it and maintain a linear activation.normalizer_fn
: Normalization function to use instead of biases
. If normalizer_fn
is provided then biases_initializer
and biases_regularizer
are ignored and biases
are not created nor added. default set to None for no normalizer functionnormalizer_params
: Normalization function parameters.weights_initializer
: An initializer for the weights.weights_regularizer
: Optional regularizer for the weights.biases_initializer
: An initializer for the biases. If None skip biases.biases_regularizer
: Optional regularizer for the biases.reuse
: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given.variables_collections
: Optional list of collections for all the variables or a dictionary containing a different list of collection per variable.outputs_collections
: Collection to add the outputs.trainable
: Whether or not the variables should be trainable or not.scope
: Optional scope for variable_scope.A tensor representing the output of the operation.
ValueError
: If 'kernel_size' is not a list of length 3.ValueError
: If data_format
is neither NDHWC
nor NCDHW
.ValueError
: If C
dimension of inputs
is None.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/layers/conv3d_transpose