tf.contrib.layers.embed_sequence( ids, vocab_size=None, embed_dim=None, unique=False, initializer=None, regularizer=None, trainable=True, scope=None, reuse=None )
Defined in tensorflow/contrib/layers/python/layers/encoders.py
.
See the guide: Layers (contrib) > Higher level ops for building neural network layers
Maps a sequence of symbols to a sequence of embeddings.
Typical use case would be reusing embeddings between an encoder and decoder.
ids
: [batch_size, doc_length]
Tensor
of type int32
or int64
with symbol ids.vocab_size
: Integer number of symbols in vocabulary.embed_dim
: Integer number of dimensions for embedding matrix.unique
: If True
, will first compute the unique set of indices, and then lookup each embedding once, repeating them in the output as needed.initializer
: An initializer for the embeddings, if None
default for current scope is used.regularizer
: Optional regularizer for the embeddings.trainable
: If True
also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES
(see tf.Variable
).scope
: Optional string specifying the variable scope for the op, required if reuse=True
.reuse
: If True
, variables inside the op will be reused.Tensor
of [batch_size, doc_length, embed_dim]
with embedded sequences.
ValueError
: if embed_dim
or vocab_size
are not specified when reuse
is None
or False
.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/layers/embed_sequence