tf.contrib.layers.instance_norm( inputs, center=True, scale=True, epsilon=1e-06, activation_fn=None, param_initializers=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, data_format=DATA_FORMAT_NHWC, scope=None )
Defined in tensorflow/contrib/layers/python/layers/normalization.py
.
Functional interface for the instance normalization layer.
Reference: https://arxiv.org/abs/1607.08022.
"Instance Normalization: The Missing Ingredient for Fast Stylization" Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky
inputs
: A tensor with 2 or more dimensions, where the first dimension has batch_size
. The normalization is over all but the last dimension if data_format
is NHWC
and the second dimension if data_format
is NCHW
.center
: If True, add offset of beta
to normalized tensor. If False, beta
is ignored.scale
: If True, multiply by gamma
. If False, gamma
is not used. When the next layer is linear (also e.g. nn.relu
), this can be disabled since the scaling can be done by the next layer.epsilon
: Small float added to variance to avoid dividing by zero.activation_fn
: Activation function, default set to None to skip it and maintain a linear activation.param_initializers
: Optional initializers for beta, gamma, moving mean and moving variance.reuse
: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given.variables_collections
: Optional collections for the variables.outputs_collections
: Collections to add the outputs.trainable
: If True
also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES
(see tf.Variable
).data_format
: A string. NHWC
(default) and NCHW
are supported.scope
: Optional scope for variable_scope
.A Tensor
representing the output of the operation.
ValueError
: If data_format
is neither NHWC
nor NCHW
.ValueError
: If the rank of inputs
is undefined.ValueError
: If rank or channels dimension of inputs
is undefined.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/layers/instance_norm