tf.contrib.layers.optimize_loss( loss, global_step, learning_rate, optimizer, gradient_noise_scale=None, gradient_multipliers=None, clip_gradients=None, learning_rate_decay_fn=None, update_ops=None, variables=None, name=None, summaries=None, colocate_gradients_with_ops=False, increment_global_step=True )
Defined in tensorflow/contrib/layers/python/layers/optimizers.py
.
See the guide: Layers (contrib) > Optimization
Given loss and parameters for optimizer, returns a training op.
Various ways of passing optimizers include:
optimize_loss(..., optimizer='Adam')
.Tensor
as argument and returning an Optimizer
instance. E.g. optimize_loss(..., optimizer=lambda lr: tf.train.MomentumOptimizer(lr, momentum=0.5))
. Alternatively, if learning_rate
is None
, the function takes no arguments. E.g. optimize_loss(..., learning_rate=None, optimizer=lambda: tf.train.MomentumOptimizer(0.5, momentum=0.5))
.Optimizer
having a single-argument constructor (the argument is the learning rate), such as AdamOptimizer or AdagradOptimizer. E.g. optimize_loss(..., optimizer=tf.train.AdagradOptimizer)
.Optimizer
. E.g., optimize_loss(..., optimizer=tf.train.AdagradOptimizer(0.5))
.loss
: Scalar Tensor
.global_step
: Scalar int Tensor
, step counter to update on each step unless increment_global_step
is False
. If not supplied, it will be fetched from the default graph (see tf.train.get_global_step
for details). If it has not been created, no step will be incremented with each weight update. learning_rate_decay_fn
requires global_step
.learning_rate
: float or Tensor
, magnitude of update per each training step. Can be None
.optimizer
: string, class or optimizer instance, used as trainer. string should be name of optimizer, like 'SGD', 'Adam', 'Adagrad'. Full list in OPTIMIZER_CLS_NAMES constant. class should be sub-class of tf.Optimizer
that implements compute_gradients
and apply_gradients
functions. optimizer instance should be instantiation of tf.Optimizer
sub-class and have compute_gradients
and apply_gradients
functions.gradient_noise_scale
: float or None, adds 0-mean normal noise scaled by this value.gradient_multipliers
: dict of variables or variable names to floats. If present, gradients for specified variables will be multiplied by given constant.clip_gradients
: float, callable or None
. If float, is provided, a global clipping is applied to prevent the norm of the gradient to exceed this value. Alternatively, a callable can be provided e.g.: adaptive_clipping. This callable takes a list
of (gradients, variables)
tuple
s and returns the same thing with the gradients modified.learning_rate_decay_fn
: function, takes learning_rate
and global_step
Tensor
s, returns Tensor
. Can be used to implement any learning rate decay functions. For example: tf.train.exponential_decay
. Ignored if learning_rate
is not supplied.update_ops
: list of update Operation
s to execute at each step. If None
, uses elements of UPDATE_OPS collection. The order of execution between update_ops
and loss
is non-deterministic.variables
: list of variables to optimize or None
to use all trainable variables.name
: The name for this operation is used to scope operations and summaries.summaries
: List of internal quantities to visualize on tensorboard. If not set, the loss, the learning rate, and the global norm of the gradients will be reported. The complete list of possible values is in OPTIMIZER_SUMMARIES.colocate_gradients_with_ops
: If True, try colocating gradients with the corresponding op.increment_global_step
: Whether to increment global_step
. If your model calls optimize_loss
multiple times per training step (e.g. to optimize different parts of the model), use this arg to avoid incrementing global_step
more times than necessary.Training op.
ValueError
: if:loss
is an invalid type or shape.global_step
is an invalid type or shape.learning_rate
is an invalid type or value.optimizer
has the wrong type.clip_gradients
is neither float nor callable.learning_rate
and learning_rate_decay_fn
are supplied, but no global_step
is available.gradients
is empty.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/layers/optimize_loss