tf.contrib.learn.learn_runner.run( experiment_fn, output_dir=None, schedule=None, run_config=None, hparams=None )
Defined in tensorflow/contrib/learn/python/learn/learn_runner.py
.
Make and run an experiment. (deprecated)
THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.estimator.train_and_evaluate.
It creates an Experiment by calling experiment_fn
. Then it calls the function named as schedule
of the Experiment.
If schedule is not provided, then the default schedule for the current task type is used. The defaults are as follows:
If the experiment's config does not include a task type, then an exception is raised.
Example with run_config
(Recommended):
def _create_my_experiment(run_config, hparams): # You can change a subset of the run_config properties as # run_config = run_config.replace(save_checkpoints_steps=500) return tf.contrib.learn.Experiment( estimator=my_estimator(config=run_config, hparams=hparams), train_input_fn=my_train_input, eval_input_fn=my_eval_input) learn_runner.run( experiment_fn=_create_my_experiment, run_config=run_config_lib.RunConfig(model_dir="some/output/dir"), schedule="train_and_evaluate", hparams=_create_default_hparams())
or simply as
learn_runner.run( experiment_fn=_create_my_experiment, run_config=run_config_lib.RunConfig(model_dir="some/output/dir"))
if hparams
is not used by the Estimator
. On a single machine, schedule
defaults to train_and_evaluate
.
Example with output_dir
(deprecated):
def _create_my_experiment(output_dir): return tf.contrib.learn.Experiment( estimator=my_estimator(model_dir=output_dir), train_input_fn=my_train_input, eval_input_fn=my_eval_input) learn_runner.run( experiment_fn=_create_my_experiment, output_dir="some/output/dir", schedule="train")
experiment_fn
: A function that creates an Experiment
. It could be one of the two following signatures: 1) [Deprecated] It accepts an argument output_dir
which should be used to create the Estimator
(passed as model_dir
to its constructor). It must return an Experiment
. For this case, run_config
and hparams
must be None. 2) It accepts two arguments run_config
and hparams
, which should be used to create the Estimator
(run_config
passed as config
to its constructor; hparams
used as the hyper-parameters of the model). It must return an Experiment
. For this case, output_dir
must be None.output_dir
: Base output directory [Deprecated].schedule
: The name of the method in the Experiment
to run.run_config
: RunConfig
instance. The run_config.model_dir
must be non-empty. If run_config
is set, output_dir
must be None.hparams
: HParams
instance. The default hyper-parameters, which will be passed to the experiment_fn
if run_config
is not None.The return value of function schedule
.
ValueError
: If both output_dir
and run_config
are empty or set, schedule
is None but no task type is set in the built experiment's config, the task type has no default, run_config.model_dir
is empty or schedule
doesn't reference a member of Experiment
.TypeError
: schedule
references non-callable member.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/learn/learn_runner/run