tf.contrib.learn.regression_head( label_name=None, weight_column_name=None, label_dimension=1, enable_centered_bias=False, head_name=None, link_fn=None )
Defined in tensorflow/contrib/learn/python/learn/estimators/head.py
.
Creates a Head
for linear regression. (deprecated)
THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Please switch to tf.contrib.estimator.*_head.
label_name
: String, name of the key in label dict. Can be null if label is a tensor (single headed models).weight_column_name
: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example.label_dimension
: Number of regression labels per example. This is the size of the last dimension of the labels Tensor
(typically, this has shape [batch_size, label_dimension]
).enable_centered_bias
: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias.head_name
: name of the head. If provided, predictions, summary and metrics keys will be suffixed by "/" + head_name
and the default variable scope will be head_name
.link_fn
: link function to convert logits to predictions. If provided, this link function will be used instead of identity.An instance of Head
for linear regression.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/learn/regression_head