tf.contrib.legacy_seq2seq.one2many_rnn_seq2seq( encoder_inputs, decoder_inputs_dict, enc_cell, dec_cells_dict, num_encoder_symbols, num_decoder_symbols_dict, embedding_size, feed_previous=False, dtype=None, scope=None )
Defined in tensorflow/contrib/legacy_seq2seq/python/ops/seq2seq.py
.
One-to-many RNN sequence-to-sequence model (multi-task).
This is a multi-task sequence-to-sequence model with one encoder and multiple decoders. Reference to multi-task sequence-to-sequence learning can be found here: http://arxiv.org/abs/1511.06114
encoder_inputs
: A list of 1D int32 Tensors of shape [batch_size].decoder_inputs_dict
: A dictionary mapping decoder name (string) to the corresponding decoder_inputs; each decoder_inputs is a list of 1D Tensors of shape [batch_size]; num_decoders is defined as len(decoder_inputs_dict).enc_cell
: tf.nn.rnn_cell.RNNCell defining the encoder cell function and size.dec_cells_dict
: A dictionary mapping encoder name (string) to an instance of tf.nn.rnn_cell.RNNCell.num_encoder_symbols
: Integer; number of symbols on the encoder side.num_decoder_symbols_dict
: A dictionary mapping decoder name (string) to an integer specifying number of symbols for the corresponding decoder; len(num_decoder_symbols_dict) must be equal to num_decoders.embedding_size
: Integer, the length of the embedding vector for each symbol.feed_previous
: Boolean or scalar Boolean Tensor; if True, only the first of decoder_inputs will be used (the "GO" symbol), and all other decoder inputs will be taken from previous outputs (as in embedding_rnn_decoder). If False, decoder_inputs are used as given (the standard decoder case).dtype
: The dtype of the initial state for both the encoder and encoder rnn cells (default: tf.float32).scope
: VariableScope for the created subgraph; defaults to "one2many_rnn_seq2seq"A tuple of the form (outputs_dict, state_dict), where: outputs_dict
: A mapping from decoder name (string) to a list of the same length as decoder_inputs_dict[name]; each element in the list is a 2D Tensors with shape [batch_size x num_decoder_symbol_list[name]] containing the generated outputs. state_dict
: A mapping from decoder name (string) to the final state of the corresponding decoder RNN; it is a 2D Tensor of shape [batch_size x cell.state_size].
TypeError
: if enc_cell or any of the dec_cells are not instances of RNNCell.ValueError
: if len(dec_cells) != len(decoder_inputs_dict).
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/legacy_seq2seq/one2many_rnn_seq2seq