HashTable
Inherits From: InitializableLookupTableBase
Defined in tensorflow/python/ops/lookup_ops.py
.
A generic hash table implementation.
Example usage:
table = tf.HashTable( tf.KeyValueTensorInitializer(keys, values), -1) out = table.lookup(input_tensor) table.init.run() print(out.eval())
default_value
The default value of the table.
init
The table initialization op.
key_dtype
The table key dtype.
name
The name of the table.
table_ref
Get the underlying table reference.
value_dtype
The table value dtype.
__init__
__init__( initializer, default_value, shared_name=None, name=None )
Creates a non-initialized HashTable
object.
Creates a table, the type of its keys and values are specified by the initializer. Before using the table you will have to initialize it. After initialization the table will be immutable.
initializer
: The table initializer to use. See HashTable
kernel for supported key and value types.default_value
: The value to use if a key is missing in the table.shared_name
: If non-empty, this table will be shared under the given name across multiple sessions.name
: A name for the operation (optional).A HashTable
object.
lookup
lookup( keys, name=None )
Looks up keys
in a table, outputs the corresponding values.
The default_value
is used for keys not present in the table.
keys
: Keys to look up. May be either a SparseTensor
or dense Tensor
.name
: A name for the operation (optional).A SparseTensor
if keys are sparse, otherwise a dense Tensor
.
TypeError
: when keys
or default_value
doesn't match the table data types.size
size(name=None)
Compute the number of elements in this table.
name
: A name for the operation (optional).A scalar tensor containing the number of elements in this table.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/lookup/HashTable