HashTable
Inherits From: InitializableLookupTableBase
Defined in tensorflow/python/ops/lookup_ops.py.
A generic hash table implementation.
Example usage:
table = tf.HashTable(
tf.KeyValueTensorInitializer(keys, values), -1)
out = table.lookup(input_tensor)
table.init.run()
print(out.eval())
default_valueThe default value of the table.
initThe table initialization op.
key_dtypeThe table key dtype.
nameThe name of the table.
table_refGet the underlying table reference.
value_dtypeThe table value dtype.
__init____init__(
initializer,
default_value,
shared_name=None,
name=None
)
Creates a non-initialized HashTable object.
Creates a table, the type of its keys and values are specified by the initializer. Before using the table you will have to initialize it. After initialization the table will be immutable.
initializer: The table initializer to use. See HashTable kernel for supported key and value types.default_value: The value to use if a key is missing in the table.shared_name: If non-empty, this table will be shared under the given name across multiple sessions.name: A name for the operation (optional).A HashTable object.
lookuplookup(
keys,
name=None
)
Looks up keys in a table, outputs the corresponding values.
The default_value is used for keys not present in the table.
keys: Keys to look up. May be either a SparseTensor or dense Tensor.name: A name for the operation (optional).A SparseTensor if keys are sparse, otherwise a dense Tensor.
TypeError: when keys or default_value doesn't match the table data types.sizesize(name=None)
Compute the number of elements in this table.
name: A name for the operation (optional).A scalar tensor containing the number of elements in this table.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/lookup/HashTable