tf.contrib.losses.metric_learning.cluster_loss( labels, embeddings, margin_multiplier, enable_pam_finetuning=True, margin_type='nmi', print_losses=False )
Defined in tensorflow/contrib/losses/python/metric_learning/metric_loss_ops.py
.
Computes the clustering loss.
The following structured margins are supported: nmi: normalized mutual information ami: adjusted mutual information ari: adjusted random index vmeasure: v-measure const: indicator checking whether the two clusterings are the same.
labels
: 2-D Tensor of labels of shape [batch size, 1]embeddings
: 2-D Tensor of embeddings of shape [batch size, embedding dimension]. Embeddings should be l2 normalized.margin_multiplier
: float32 scalar. multiplier on the structured margin term See section 3.2 of paper for discussion.enable_pam_finetuning
: Boolean, Whether to run local pam refinement. See section 3.4 of paper for discussion.margin_type
: Type of structured margin to use. See section 3.2 of paper for discussion. Can be 'nmi', 'ami', 'ari', 'vmeasure', 'const'.print_losses
: Boolean. Option to print the loss.Paper: https://arxiv.org/abs/1612.01213.
clustering_loss
: A float32 scalar Tensor
.ImportError
: If sklearn dependency is not installed.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/losses/metric_learning/cluster_loss