TimeFreqLSTMCell
Inherits From: RNNCell
Defined in tensorflow/contrib/rnn/python/ops/rnn_cell.py
.
See the guide: RNN and Cells (contrib) > Core RNN Cell wrappers (RNNCells that wrap other RNNCells)
Time-Frequency Long short-term memory unit (LSTM) recurrent network cell.
This implementation is based on:
Tara N. Sainath and Bo Li "Modeling Time-Frequency Patterns with LSTM vs. Convolutional Architectures for LVCSR Tasks." submitted to INTERSPEECH, 2016.
It uses peep-hole connections and optional cell clipping.
activity_regularizer
Optional regularizer function for the output of this layer.
dtype
graph
input
Retrieves the input tensor(s) of a layer.
Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer.
Input tensor or list of input tensors.
AttributeError
: if the layer is connected to more than one incoming layers.RuntimeError
: If called in Eager mode.AttributeError
: If no inbound nodes are found.input_shape
Retrieves the input shape(s) of a layer.
Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer, or if all inputs have the same shape.
Input shape, as an integer shape tuple (or list of shape tuples, one tuple per input tensor).
AttributeError
: if the layer has no defined input_shape.RuntimeError
: if called in Eager mode.losses
Losses which are associated with this Layer
.
Note that when executing eagerly, getting this property evaluates regularizers. When using graph execution, variable regularization ops have already been created and are simply returned here.
A list of tensors.
name
non_trainable_variables
non_trainable_weights
output
Retrieves the output tensor(s) of a layer.
Only applicable if the layer has exactly one output, i.e. if it is connected to one incoming layer.
Output tensor or list of output tensors.
AttributeError
: if the layer is connected to more than one incoming layers.RuntimeError
: if called in Eager mode.output_shape
Retrieves the output shape(s) of a layer.
Only applicable if the layer has one output, or if all outputs have the same shape.
Output shape, as an integer shape tuple (or list of shape tuples, one tuple per output tensor).
AttributeError
: if the layer has no defined output shape.RuntimeError
: if called in Eager mode.output_size
Integer or TensorShape: size of outputs produced by this cell.
scope_name
state_size
size(s) of state(s) used by this cell.
It can be represented by an Integer, a TensorShape or a tuple of Integers or TensorShapes.
trainable_variables
trainable_weights
updates
variables
Returns the list of all layer variables/weights.
A list of variables.
weights
Returns the list of all layer variables/weights.
A list of variables.
__init__
__init__( num_units, use_peepholes=False, cell_clip=None, initializer=None, num_unit_shards=1, forget_bias=1.0, feature_size=None, frequency_skip=1, reuse=None )
Initialize the parameters for an LSTM cell.
num_units
: int, The number of units in the LSTM celluse_peepholes
: bool, set True to enable diagonal/peephole connections.cell_clip
: (optional) A float value, if provided the cell state is clipped by this value prior to the cell output activation.initializer
: (optional) The initializer to use for the weight and projection matrices.num_unit_shards
: int, How to split the weight matrix. If >1, the weight matrix is stored across num_unit_shards.forget_bias
: float, Biases of the forget gate are initialized by default to 1 in order to reduce the scale of forgetting at the beginning of the training.feature_size
: int, The size of the input feature the LSTM spans over.frequency_skip
: int, The amount the LSTM filter is shifted by in frequency.reuse
: (optional) Python boolean describing whether to reuse variables in an existing scope. If not True
, and the existing scope already has the given variables, an error is raised.__call__
__call__( inputs, state, scope=None )
Run this RNN cell on inputs, starting from the given state.
inputs
: 2-D
tensor with shape [batch_size, input_size]
.state
: if self.state_size
is an integer, this should be a 2-D Tensor
with shape [batch_size, self.state_size]
. Otherwise, if self.state_size
is a tuple of integers, this should be a tuple with shapes [batch_size, s] for s in self.state_size
.scope
: VariableScope for the created subgraph; defaults to class name.A pair containing:
2-D
tensor with shape [batch_size, self.output_size]
.2-D
tensor, or a tuple of tensors matching the arity and shapes of state
.__deepcopy__
__deepcopy__(memo)
add_loss
add_loss( losses, inputs=None )
Add loss tensor(s), potentially dependent on layer inputs.
Some losses (for instance, activity regularization losses) may be dependent on the inputs passed when calling a layer. Hence, when reusing the same layer on different inputs a
and b
, some entries in layer.losses
may be dependent on a
and some on b
. This method automatically keeps track of dependencies.
The get_losses_for
method allows to retrieve the losses relevant to a specific set of inputs.
Note that add_loss
is not supported when executing eagerly. Instead, variable regularizers may be added through add_variable
. Activity regularization is not supported directly (but such losses may be returned from Layer.call()
).
losses
: Loss tensor, or list/tuple of tensors.inputs
: If anything other than None is passed, it signals the losses are conditional on some of the layer's inputs, and thus they should only be run where these inputs are available. This is the case for activity regularization losses, for instance. If None
is passed, the losses are assumed to be unconditional, and will apply across all dataflows of the layer (e.g. weight regularization losses).RuntimeError
: If called in Eager mode.add_update
add_update( updates, inputs=None )
Add update op(s), potentially dependent on layer inputs.
Weight updates (for instance, the updates of the moving mean and variance in a BatchNormalization layer) may be dependent on the inputs passed when calling a layer. Hence, when reusing the same layer on different inputs a
and b
, some entries in layer.updates
may be dependent on a
and some on b
. This method automatically keeps track of dependencies.
The get_updates_for
method allows to retrieve the updates relevant to a specific set of inputs.
This call is ignored in Eager mode.
updates
: Update op, or list/tuple of update ops.inputs
: If anything other than None is passed, it signals the updates are conditional on some of the layer's inputs, and thus they should only be run where these inputs are available. This is the case for BatchNormalization updates, for instance. If None, the updates will be taken into account unconditionally, and you are responsible for making sure that any dependency they might have is available at runtime. A step counter might fall into this category.add_variable
add_variable( name, shape, dtype=None, initializer=None, regularizer=None, trainable=True, constraint=None, partitioner=None )
Adds a new variable to the layer, or gets an existing one; returns it.
name
: variable name.shape
: variable shape.dtype
: The type of the variable. Defaults to self.dtype
or float32
.initializer
: initializer instance (callable).regularizer
: regularizer instance (callable).trainable
: whether the variable should be part of the layer's "trainable_variables" (e.g. variables, biases) or "non_trainable_variables" (e.g. BatchNorm mean, stddev). Note, if the current variable scope is marked as non-trainable then this parameter is ignored and any added variables are also marked as non-trainable.constraint
: constraint instance (callable).partitioner
: (optional) partitioner instance (callable). If provided, when the requested variable is created it will be split into multiple partitions according to partitioner
. In this case, an instance of PartitionedVariable
is returned. Available partitioners include tf.fixed_size_partitioner
and tf.variable_axis_size_partitioner
. For more details, see the documentation of tf.get_variable
and the "Variable Partitioners and Sharding" section of the API guide.The created variable. Usually either a Variable
or ResourceVariable
instance. If partitioner
is not None
, a PartitionedVariable
instance is returned.
RuntimeError
: If called with partioned variable regularization and eager execution is enabled.apply
apply( inputs, *args, **kwargs )
Apply the layer on a input.
This simply wraps self.__call__
.
inputs
: Input tensor(s).*args
: additional positional arguments to be passed to self.call
.**kwargs
: additional keyword arguments to be passed to self.call
.Output tensor(s).
build
build(_)
Creates the variables of the layer.
call
call( inputs, state )
Run one step of LSTM.
inputs
: input Tensor, 2D, batch x num_units.state
: state Tensor, 2D, batch x state_size.A tuple containing: - A 2D, batch x output_dim, Tensor representing the output of the LSTM after reading "inputs" when previous state was "state". Here output_dim is num_units. - A 2D, batch x state_size, Tensor representing the new state of LSTM after reading "inputs" when previous state was "state".
ValueError
: if an input_size was specified and the provided inputs have a different dimension.compute_output_shape
compute_output_shape(input_shape)
Computes the output shape of the layer given the input shape.
input_shape
: A (possibly nested tuple of) TensorShape
. It need not be fully defined (e.g. the batch size may be unknown).A (possibly nested tuple of) TensorShape
.
TypeError
: if input_shape
is not a (possibly nested tuple of) TensorShape
.ValueError
: if input_shape
is incomplete or is incompatible with the the layer.count_params
count_params()
Count the total number of scalars composing the weights.
An integer count.
ValueError
: if the layer isn't yet built (in which case its weights aren't yet defined).get_input_at
get_input_at(node_index)
Retrieves the input tensor(s) of a layer at a given node.
node_index
: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0
will correspond to the first time the layer was called.A tensor (or list of tensors if the layer has multiple inputs).
RuntimeError
: If called in Eager mode.get_input_shape_at
get_input_shape_at(node_index)
Retrieves the input shape(s) of a layer at a given node.
node_index
: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0
will correspond to the first time the layer was called.A shape tuple (or list of shape tuples if the layer has multiple inputs).
RuntimeError
: If called in Eager mode.get_losses_for
get_losses_for(inputs)
Retrieves losses relevant to a specific set of inputs.
inputs
: Input tensor or list/tuple of input tensors.List of loss tensors of the layer that depend on inputs
.
RuntimeError
: If called in Eager mode.get_output_at
get_output_at(node_index)
Retrieves the output tensor(s) of a layer at a given node.
node_index
: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0
will correspond to the first time the layer was called.A tensor (or list of tensors if the layer has multiple outputs).
RuntimeError
: If called in Eager mode.get_output_shape_at
get_output_shape_at(node_index)
Retrieves the output shape(s) of a layer at a given node.
node_index
: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0
will correspond to the first time the layer was called.A shape tuple (or list of shape tuples if the layer has multiple outputs).
RuntimeError
: If called in Eager mode.get_updates_for
get_updates_for(inputs)
Retrieves updates relevant to a specific set of inputs.
inputs
: Input tensor or list/tuple of input tensors.List of update ops of the layer that depend on inputs
.
RuntimeError
: If called in Eager mode.zero_state
zero_state( batch_size, dtype )
Return zero-filled state tensor(s).
batch_size
: int, float, or unit Tensor representing the batch size.dtype
: the data type to use for the state.If state_size
is an int or TensorShape, then the return value is a N-D
tensor of shape [batch_size, state_size]
filled with zeros.
If state_size
is a nested list or tuple, then the return value is a nested list or tuple (of the same structure) of 2-D
tensors with the shapes [batch_size, s]
for each s in state_size
.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/TimeFreqLSTMCell