Dimension
Defined in tensorflow/python/framework/tensor_shape.py
.
See the guide: Building Graphs > Defining new operations
Represents the value of one dimension in a TensorShape.
value
The value of this dimension, or None if it is unknown.
__init__
__init__(value)
Creates a new Dimension with the given value.
__add__
__add__(other)
Returns the sum of self
and other
.
Dimensions are summed as follows:
tf.Dimension(m) + tf.Dimension(n) == tf.Dimension(m + n) tf.Dimension(m) + tf.Dimension(None) == tf.Dimension(None) tf.Dimension(None) + tf.Dimension(n) == tf.Dimension(None) tf.Dimension(None) + tf.Dimension(None) == tf.Dimension(None)
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension whose value is the sum of self
and other
.
__div__
__div__(other)
DEPRECATED: Use __floordiv__
via x // y
instead.
This function exists only for backwards compatibility purposes; new code should use __floordiv__
via the syntax x // y
. Using x // y
communicates clearly that the result rounds down, and is forward compatible to Python 3.
other
: Another Dimension
.A Dimension
whose value is the integer quotient of self
and other
.
__eq__
__eq__(other)
Returns true if other
has the same known value as this Dimension.
__floordiv__
__floordiv__(other)
Returns the quotient of self
and other
rounded down.
Dimensions are divided as follows:
tf.Dimension(m) // tf.Dimension(n) == tf.Dimension(m // n) tf.Dimension(m) // tf.Dimension(None) == tf.Dimension(None) tf.Dimension(None) // tf.Dimension(n) == tf.Dimension(None) tf.Dimension(None) // tf.Dimension(None) == tf.Dimension(None)
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension
whose value is the integer quotient of self
and other
.
__ge__
__ge__(other)
Returns True if self
is known to be greater than or equal to other
.
Dimensions are compared as follows:
(tf.Dimension(m) >= tf.Dimension(n)) == (m >= n) (tf.Dimension(m) >= tf.Dimension(None)) == None (tf.Dimension(None) >= tf.Dimension(n)) == None (tf.Dimension(None) >= tf.Dimension(None)) == None
other
: Another Dimension.The value of self.value >= other.value
if both are known, otherwise None.
__gt__
__gt__(other)
Returns True if self
is known to be greater than other
.
Dimensions are compared as follows:
(tf.Dimension(m) > tf.Dimension(n)) == (m > n) (tf.Dimension(m) > tf.Dimension(None)) == None (tf.Dimension(None) > tf.Dimension(n)) == None (tf.Dimension(None) > tf.Dimension(None)) == None
other
: Another Dimension.The value of self.value > other.value
if both are known, otherwise None.
__index__
__index__()
__int__
__int__()
__le__
__le__(other)
Returns True if self
is known to be less than or equal to other
.
Dimensions are compared as follows:
(tf.Dimension(m) <= tf.Dimension(n)) == (m <= n) (tf.Dimension(m) <= tf.Dimension(None)) == None (tf.Dimension(None) <= tf.Dimension(n)) == None (tf.Dimension(None) <= tf.Dimension(None)) == None
other
: Another Dimension.The value of self.value <= other.value
if both are known, otherwise None.
__long__
__long__()
__lt__
__lt__(other)
Returns True if self
is known to be less than other
.
Dimensions are compared as follows:
(tf.Dimension(m) < tf.Dimension(n)) == (m < n) (tf.Dimension(m) < tf.Dimension(None)) == None (tf.Dimension(None) < tf.Dimension(n)) == None (tf.Dimension(None) < tf.Dimension(None)) == None
other
: Another Dimension.The value of self.value < other.value
if both are known, otherwise None.
__mod__
__mod__(other)
Returns self
modulo other
.
Dimension moduli are computed as follows:
tf.Dimension(m) % tf.Dimension(n) == tf.Dimension(m % n) tf.Dimension(m) % tf.Dimension(None) == tf.Dimension(None) tf.Dimension(None) % tf.Dimension(n) == tf.Dimension(None) tf.Dimension(None) % tf.Dimension(None) == tf.Dimension(None)
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension whose value is self
modulo other
.
__mul__
__mul__(other)
Returns the product of self
and other
.
Dimensions are summed as follows:
tf.Dimension(m) * tf.Dimension(n) == tf.Dimension(m * n) tf.Dimension(m) * tf.Dimension(None) == tf.Dimension(None) tf.Dimension(None) * tf.Dimension(n) == tf.Dimension(None) tf.Dimension(None) * tf.Dimension(None) == tf.Dimension(None)
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension whose value is the product of self
and other
.
__ne__
__ne__(other)
Returns true if other
has a different known value from self
.
__radd__
__radd__(other)
Returns the sum of other
and self
.
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension whose value is the sum of self
and other
.
__rfloordiv__
__rfloordiv__(other)
Returns the quotient of other
and self
rounded down.
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension
whose value is the integer quotient of self
and other
.
__rmod__
__rmod__(other)
Returns other
modulo self
.
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension whose value is other
modulo self
.
__rmul__
__rmul__(other)
Returns the product of self
and other
.
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension whose value is the product of self
and other
.
__rsub__
__rsub__(other)
Returns the subtraction of self
from other
.
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension whose value is the subtraction of self
from other
.
__sub__
__sub__(other)
Returns the subtraction of other
from self
.
Dimensions are subtracted as follows:
tf.Dimension(m) - tf.Dimension(n) == tf.Dimension(m - n) tf.Dimension(m) - tf.Dimension(None) == tf.Dimension(None) tf.Dimension(None) - tf.Dimension(n) == tf.Dimension(None) tf.Dimension(None) - tf.Dimension(None) == tf.Dimension(None)
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension whose value is the subtraction of other
from self
.
assert_is_compatible_with
assert_is_compatible_with(other)
Raises an exception if other
is not compatible with this Dimension.
other
: Another Dimension.ValueError
: If self
and other
are not compatible (see is_compatible_with).is_compatible_with
is_compatible_with(other)
Returns true if other
is compatible with this Dimension.
Two known Dimensions are compatible if they have the same value. An unknown Dimension is compatible with all other Dimensions.
other
: Another Dimension.True if this Dimension and other
are compatible.
merge_with
merge_with(other)
Returns a Dimension that combines the information in self
and other
.
Dimensions are combined as follows:
tf.Dimension(n) .merge_with(tf.Dimension(n)) == tf.Dimension(n) tf.Dimension(n) .merge_with(tf.Dimension(None)) == tf.Dimension(n) tf.Dimension(None).merge_with(tf.Dimension(n)) == tf.Dimension(n) tf.Dimension(None).merge_with(tf.Dimension(None)) == tf.Dimension(None) tf.Dimension(n) .merge_with(tf.Dimension(m)) # raises ValueError for n != m
other
: Another Dimension.A Dimension containing the combined information of self
and other
.
ValueError
: If self
and other
are not compatible (see is_compatible_with).
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/Dimension