tf.fake_quant_with_min_max_vars_per_channel_gradient(
gradients,
inputs,
min,
max,
num_bits=8,
narrow_range=False,
name=None
)
Defined in tensorflow/python/ops/gen_array_ops.py.
See the guide: Tensor Transformations > Fake quantization
Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation.
gradients: A Tensor of type float32. Backpropagated gradients above the FakeQuantWithMinMaxVars operation, shape one of: [d], [b, d], [b, h, w, d].inputs: A Tensor of type float32. Values passed as inputs to the FakeQuantWithMinMaxVars operation, shape same as gradients. min, max: Quantization interval, floats of shape [d].min: A Tensor of type float32.max: A Tensor of type float32.num_bits: An optional int. Defaults to 8. The bitwidth of the quantization; between 2 and 16, inclusive.narrow_range: An optional bool. Defaults to False. Whether to quantize into 2^num_bits - 1 distinct values.name: A name for the operation (optional).A tuple of Tensor objects (backprops_wrt_input, backprop_wrt_min, backprop_wrt_max).
backprops_wrt_input: A Tensor of type float32.backprop_wrt_min: A Tensor of type float32.backprop_wrt_max: A Tensor of type float32.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/fake_quant_with_min_max_vars_per_channel_gradient